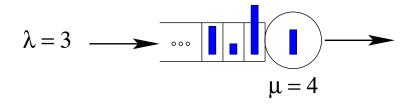

A single-server queue

Average Arrival Rate:


Interarrival Time:

Mean Interarrival Time:

Job Size (Service Requirement):

Mean Job Size:

Average Service Rate:

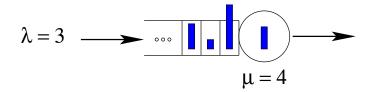
PEOPLE SPEAK

VS.

QUEUEING SPEAK

Examples from your work:

Common Performance Metrics


• Response Time, T:

 \bullet Waiting Time or Delay, T_Q

 $\bullet\,$ Number of jobs in system, N

 $\bullet\,$ Number of jobs in queue, N_Q

Stability

Question: What happens if $\lambda > \mu$?

Here's why:

 $\overline{N(t)} = \text{Number jobs in system } at \text{ time } t$

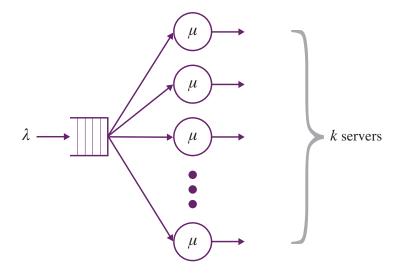
A(t) =Number arrivals by time t

 $C(t) = \text{Number completions}(\text{depatures}) \ by \text{ time } t$

We will always assume $\lambda < \mu$. (Stability)

Throughput, X

Question: What is throughput?

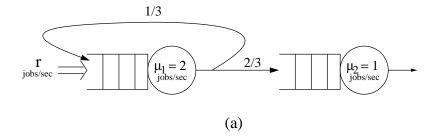

Question: Which has higher throughput?

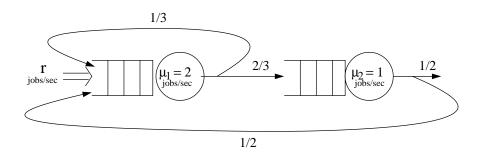
$$\lambda = 3$$
 $\mu = 6$

vs.

$$\lambda = 3$$
 $\mu = 4$

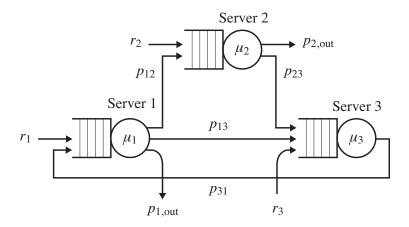
Throughput for Server Farm




Question: What condition is needed for stability?

Question: What's the throughput? (assuming stability)

Throughput for Network of Queues


Question: What is the maximum outside arrival rate?

(b)

Throughput for Network of Queues

Question: What's the throughput of this system? (assume stability)

Question: What's the throughput of server i?

Question: What do we need for stability of this system?

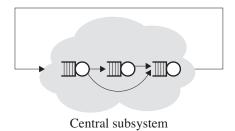
Device Utilization (Load)

When talking about "utilization," we're thinking of a single device.

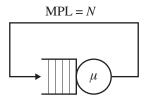
$$\lambda = 3$$
 $\mu = 4$

<u>Defn</u>: Device **utilization**, a.k.a. **load**, is the long-run fraction of time that the device is busy.

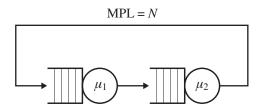
Let B(t) = total time server is busy during [0, t]. Q: What is ρ ?

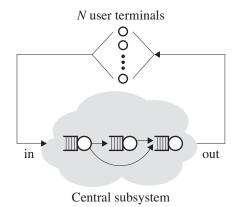

Example:

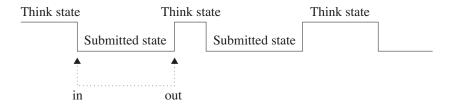
Each job contributes 1/4 sec of work on average.


Q: What is ρ ?

³ jobs/sec arrive on average.


Closed System (Batch)


Question: What is throughput below?



Question: What is throughput below?

Closed System (Interactive)

