Homework is due at the start of class on 12/2. Please turn in a hardcopy. It can be handwritten. Please show all computations.

Reading: Schroeder, Wierman, Harchol-Balter, *Open Versus Closed: A Cautionary Tale*, NSDI 2006.

Exercises:

- 1. (Analysis) Problem 7.5 from your book.
- 2. [Comparing Open vs. Closed Systems: The effect of MPL] In this problem you will primarily use simulation, however a few pieces will be doable via analysis (as marked). Your system throughout will be the simple single-server FCFS queue shown in Figure 1. Throughout, the job size distribution will be $S \sim \text{BoundedPareto}(k = 1333.33, p = 5 \cdot 10^8, \alpha = 1.8)$. Also throughout, the think time will be $Z \sim \text{Exp}(\lambda)$, where you will be determining λ .
 - (a) Think time as a function of load.
 - i. For the Open System, in Figure 1(a), the arrival process is a Poisson Process with rate λ . Use analysis to create a table for the value of λ which corresponds to loads $\rho = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9$. Now create a plot where the y-axis is the mean inter-arrival time and the x-axis is the load ρ .
 - ii. For the Closed System, in Figure 1(b), the load will be determined by the Think Time $Z \sim \text{Exp}(\lambda)$ and the MPL, N.
 - For the case of MPL = N = 10, use simulation to determine the value of λ which corresponds to loads $\rho = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9$. Now create a plot where the y-axis is the mean think time and the x-axis is the load ρ .
 - Make sure to describe how your measured ρ in your simulation. There are many ways to do this: you can use an independent Poisson Process, or take a time-average, or measure throughput X and convert that to ρ . Please describe in detail what you did.
 - Repeat for the case of MPL = N = 100 and add this to your plot of mean think time versus ρ .
 - Repeat for the case of MPL = N = 1000 and add this to your plot of mean think time versus ρ .
 - Your plot should now have 3 curves, corresponding to N=10,100,1000. Explain WHY your curves are ordered as they are. Note that you might need a log scale on your y axis to make all the 3 curves visible. Make sure that your graphs are clear. We should be able to easily read the numbers off of your graphs.

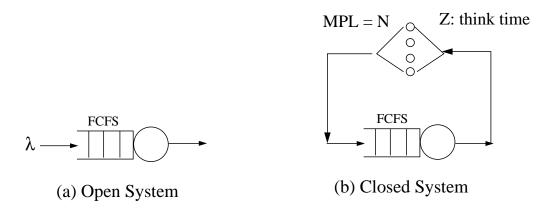


Figure 1: For problem 2.

(b) Response time as a function of load.

Use simulation to create a plot of mean response time, $\mathbf{E}[T]$, as a function of load ρ for 4 cases:

- open system
- closed system with N = 10
- closed system with N = 100
- closed system with N = 1000

For the case of the open system, use analysis to check that your plot is correct. Explain WHY the curves are ordered as they are.

3. Comparing Open vs. Closed Systems: The effect of Scheduling Repeat problem 2(b) in full but this time the scheduling policy at the queue is SRPT.

- (i) Again produce a graph of $\mathbf{E}[T]$ versus ρ for the 4 cases:
 - open system
 - closed system with N = 10
 - closed system with N = 100
 - closed system with N = 1000

Make sure that your graphs are clear. We should be able to easily read the numbers off of your graphs. [Note that there's no need to repeat part 2(a) for SRPT because the numbers won't change much in going from FCFS to SRPT for part (a).]

(ii) When load $\rho = 0.9$, what is the improvement of SRPT over FCFS in each of the above 4 cases? Specifically, compute the ratio:

Scheduling Improvement Factor =
$$\frac{\mathbf{E}\left[T\right]^{FCFS}}{\mathbf{E}\left[T\right]^{SRPT}}$$

in each of the above 4 cases.

(iii) Explain WHY the improvement factor is so much higher for the open system.