References

Index

- Accept–reject method, 232
- Active process migration, 182
- Adding n-bit numbers, 401
- Amplification of confidence, 397
- And/or tree evaluation, 379
- Approximate median algorithm, 399
- Approximating π, 395
- Arrival rate, 512
- Asymptotic notation
 - $\mathcal{O}(\cdot)$, 15
 - $\Omega(\cdot)$, 17
 - $\Theta(\cdot)$, 18
 - $\omega(\cdot)$, 17
 - $o(1)$, 16, 340
 - $o(\cdot)$, 16
 - $o(\delta)$, 213
- Average-case analysis, 365
 - Adding n-bit numbers, 401
 - Finding the max, 376
 - Marriage algorithm, 377
 - Move-to-Front, 376
 - Quicksort, 370
- Axioms of Probability, 22
- Balls and bins, 337
 - Lots of bins have many, 343
 - Max bin, 343, 344
 - With high probability, 338, 351
- Bayes’ law
 - Continuous, 145, 157, 165
 - Extended, 33
 - Original, 32
- Bayesian estimators, 285, 299
- Bernoulli random variable, 46
- Binary symmetric channel, 56
- Binomial distribution, 47
 - Like Poisson, 55
- Binomial expansion, 13
- Birthday paradox, 36, 357
- Boosting, 397
- Bounded-Pareto distribution, 189
- Brownian motion, 504
- Caching, 472
- Carmichael number, 409
- Cauchy–Schwarz inequality, 109
- Central Limit Theorem, 176, 194, 313, 474
 - Accuracy, 179
- Approximating sum, 177
- Heuristic proof via transforms, 208
- Central moments, 92, 112
- Chain rule for conditioning, 26, 36
- Chebyshev’s inequality, 99, 308
- Chernoff bound, 309
 - Change of variable, 323
 - For Binomial
 - Simple bound, 312
 - Stronger bound, 316, 324
 - For Binomial $1/−1$, 323
 - Poisson tail, 311
- Chess problems, 434, 476
- Chicken McNugget Theorem, 441
- Choosing, $\binom{n}{k}$, bounds on, 13
- Class properties, see Markov chains
- Coefficient of determination, 282
- Coefficient of variation, 87
- Coin with unknown probability, 282
- Combination, 12
- Concentration Inequalities
 - Chebyshev’s inequality, 99
- Concentration inequalities, 307
 - Chebyshev’s inequality, 308
 - Chernoff simple, 312
 - Chernoff stronger, 316, 324
 - For pair-wise independent r.v.s, 322
 - Hoeffding, 318, 326
 - Markov’s inequality, 307, 310
 - Reverse Markov, 320
- Conditional expectation given event
 - Continuous, 147, 150
 - Discrete, 69
- Conditional independence, 38, 39
- Conditional p.d.f., 145, 157
- Conditional p.m.f., 67
- Conditional probability of event, 24
- Conditionally independent events, 30
- Conditioning on a zero-probability event, 143, 157
- Conditioning on random variable
 - Continuous, 143, 157, 161
 - Discrete, 53
- Confidence interval, 328
- Consistent estimator, 257
- Constant failure rate, 194
Continuous distributions
- Bounded-Pareto, 189
- Erlang-k, 195
- Exponential, 137, 210
- Hyperexponential, 195
- Normal or Gaussian, 170
- Pareto, 187
- Uniform, 137
Control group creation, 397
Convex function, 102
Convolution, 165
Correlation, 35
Correlation coefficient, 109
Coupon collector, 65, 111, 321
Covariance, 91, 108, 109
COVID, 34, 35
Cumulative distribution function, c.d.f., 46, 136
Cups example, 64, 114
Cut-set, 389
Darts, 165
- Distance between, 165
- Probability of triangle, 167
- Smallest interval, 166
Data center utilization, 533
Decreasing failure rate (DFR), 184, 185
Deducing signal in noise, 301
Degenerate Hyperexponential, 196, 250
Delta-step proof, 211, 214, 215, 222
Different units, 87
Discrete distributions
- Bernoulli, 46
- Binomial, 47
- Geometric, 48
- Negative Binomial, 114
- Poisson, 49
Disk delay modeling, 168
Dominance, 112
Dominating set algorithm, 378
Double integrals, 4
Doubly stochastic matrix, 434
Downloading files
- Max time, 207, 227
- Min time, 207, 227
DTMC, see Markov chains
Elephants and mice, 190
Empirical measurements
- Google jobs today, 191
- Human wealth, 193
- Internet node degrees, 193
- IP flow durations, 193
- Natural disasters, 193
- Phone call durations, 193
- UNIX process lifetimes, 186
- Web file sizes, 193
- Wireless session times, 193
Ensemble average, 452
Epidemic modeling, 96, 436
Equal in distribution, 71, 84, 110, 139
Ergodic theorem of Markov chains, 494
Ergodicity, 438, 484
Erlang-k distribution, 195
Error correcting codes, 303
Estimating failure probability, 179
Estimating the max of a distribution, 273
Estimating total noise, 177
Euclidean number property, 441
Euler’s number (e), 8
Event, 21
Event implies event, 35
Event-driven simulation, 240
- Call center, 248
- Convergence, 245
- Loss probability, 250
- PASTA, 246
- Performance metrics, 244
- Queueing network, 247
- Shortest-Job-First, 251
- SITA, 251
- SRPT, 251
Expectation
- Bernoulli, 59
- Binomial, 63
- Geometric, 59, 73
- Poisson, 60
Expectation of a continuous r.v.
- As sum of tail, 151
- Original, 141
Expectation of discrete r.v.
- As sum of tail, 62, 78
- Original, 58
Expectation of function of r.v.
- Continuous, 141
- Discrete, 60
Expectation of function of random variables,
- 157, 163
- Expectation of product of r.v.s, 61, 77
- Expectation of product of random variables,
- 163
- Expectation of quotient, 77
- Expectation via conditioning
 - Discrete, 72
- Expectation via conditioning on r.v., 162
- Exponential distribution, 137, 210
- Relationship with Geometric, 211
Failure rate function, 185
- Constant, 185, 194
- Decreasing, 184
- Increasing, 184
- Fermat primality test, 408
- Fermat’s Little Theorem, 404
- Fibonacci sequence, 124
Index

Financial application, 503
Finding & largest algorithm, 377
Finding the max algorithm, 376
Fractional moments, 179
From Las Vegas to Monte Carlo, 394
From Monte Carlo to Las Vegas, 394
Fundamental Theorem of Calculus, 7, 137, 173
Gambler’s ruin problem, 505
Gambler’s walk, 490
 2D, 506
Games
 Axis & Allies, 435
 Cards, 434
 Chess, 434, 476
 Monopoly, 435
Generating function, see z-transform, see Laplace transform
Generating random permutation, 399
Generating random prime, 418
Generating random variables, 229
 Accept–reject method, 232
 Geometric, 238
 Heavy tail distributions, 239
 Inverse transform method, 229
 Joint distribution, 239
 Normal r.v., 236
 Poisson distribution, 239
Geometric distribution, 48, 110, 211
Getting distribution from z-transform, 130
Goodness-of-fit, 282
Google jobs
 Compute usage, 191
 Empirical measurements, 191
 Memory usage, 191
Hamming distance, 303
Harmonic number, H_n, 10
Harmonic series, 10
Hashing, 346
 Bloom filter hashing, 362
 Bucket hashing, 347
 With separate chaining, 350, 351
 Cryptographic signature, 355
 Expected hashes until collision, 361
 Hash collision, 357
 Hash table, 347
 Linear probing, 353
 Load factor, 348
 Open addressing, 354, 361
 Probability no collisions, 358
 SHA-256, 359
 SUHA, 348
Hazard rate function, 185
Healthcare testing, 33, 37
Heavy-tail property, 189, 196
Heavy-tailed distributions, 189
Higher moments, 102, 116, 198
Bernoulli, 91
Binomial, 89, 91, 128
Continuous r.v., 141
Discrete r.v., 83
Exponential, 142, 194, 201
Geometric, 84, 91, 110, 121
Normal, 194
Pareto, 194
Poisson, 91, 128
Uniform, 141, 194
Hoeffding’s inequality, 318, 326
HTTP request scheduling, 193
Human wealth, 194
Hyperexponential distribution, 195
Hypothesis testing, 111
i.i.d., 64
Improving accuracy of randomized alg, 388
Improving accuracy of randomized alg., 386
Increasing failure rate (IFR), 184, 185
Independence of three events, 37
Independent events, 29
 Alternative definition, 27
 Conditionally independent, 30
 Original definition, 27
 Pairwise independence, 29
Independent increments, 217
Independent random variables
 Continuous, 155
 Discrete, 51
Independent set algorithm, 382
Indicator random variable, 64, 71
Infinite variance, 189
Inspection paradox, 104, 360
 Number of friends, 106
 Size of class, 104
 Waiting for bus, 104, 110
Interaction graph, 302
Intersections of events, 21
Interval estimation, 327, 342
Interval estimator, 328
Inverse transform method, 229
Inverting transforms, 130
IP flow durations, 193
Jensen’s inequality, 103, 113
Job
 Age, 183
 CPU-hours, 191
 Lifetime, 183
 Memory-hours, 191
 Multi-stage, 227
 Remaining lifetime, 183
 Remaining size, 183
 Size, 183, 512
 Job migration, 182
Joint p.d.f., 153, 158, 162, 164
Joint p.m.f., 50
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Loss probability, 250</td>
</tr>
<tr>
<td>MAP estimator, 285, 289</td>
</tr>
<tr>
<td>MAP estimator, 285, 289</td>
</tr>
<tr>
<td>Markov chains</td>
</tr>
<tr>
<td>Markov’s inequality, 98, 307</td>
</tr>
<tr>
<td>Markovian property, 421</td>
</tr>
<tr>
<td>Marriage algorithm, 57, 377</td>
</tr>
<tr>
<td>Matrix multiplication checking</td>
</tr>
<tr>
<td>Freivalds’ algorithm, 384</td>
</tr>
<tr>
<td>Max-3SAT algorithm, 395</td>
</tr>
<tr>
<td>Max-Cut algorithm, 396</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Of Exponentials, 226, 227</td>
</tr>
<tr>
<td>Of Uniforms, 151</td>
</tr>
<tr>
<td>Maximum a Posteriori (MAP), 285</td>
</tr>
<tr>
<td>Maximum arrival rate, 533</td>
</tr>
<tr>
<td>Maximum likelihood estimation (MLE), 267</td>
</tr>
<tr>
<td>Maximum likelihood estimator, 267</td>
</tr>
<tr>
<td>Continuous, 273</td>
</tr>
<tr>
<td>Discrete, 273</td>
</tr>
<tr>
<td>Multiple estimators, 276</td>
</tr>
<tr>
<td>Mean (expectation)</td>
</tr>
<tr>
<td>Continuous, 141</td>
</tr>
<tr>
<td>Continuous alternative, 151</td>
</tr>
<tr>
<td>Discrete, 58</td>
</tr>
<tr>
<td>Discrete alternative, 62, 78</td>
</tr>
<tr>
<td>Mean estimator, 256</td>
</tr>
<tr>
<td>Mean squared error (MSE), 257</td>
</tr>
<tr>
<td>Moments, 201, 206</td>
</tr>
<tr>
<td>Moments, 201, 206</td>
</tr>
<tr>
<td>Normal, 207</td>
</tr>
<tr>
<td>Normal, 207</td>
</tr>
<tr>
<td>Kurtosis, 321</td>
</tr>
<tr>
<td>Kurtosis, 321</td>
</tr>
<tr>
<td>Las Vegas algorithms, 366</td>
</tr>
<tr>
<td>Law of Total Probability, 31</td>
</tr>
<tr>
<td>Law of Total Probability, 31</td>
</tr>
<tr>
<td>Laplace transform, 198</td>
</tr>
<tr>
<td>Laplace transform, 198</td>
</tr>
<tr>
<td>Conditioning, 203</td>
</tr>
<tr>
<td>Conditioning, 203</td>
</tr>
<tr>
<td>Cumulative distribution function, 205</td>
</tr>
<tr>
<td>Cumulative distribution function, 205</td>
</tr>
<tr>
<td>Inverting, 207</td>
</tr>
<tr>
<td>Inverting, 207</td>
</tr>
<tr>
<td>Linear, 203</td>
</tr>
<tr>
<td>Linear, 203</td>
</tr>
<tr>
<td>Linear transformation, 150, 172, 179</td>
</tr>
<tr>
<td>Linear transformation, 150, 172, 179</td>
</tr>
<tr>
<td>Linear of expectation</td>
</tr>
<tr>
<td>Continuous, 163</td>
</tr>
<tr>
<td>Continuous, 163</td>
</tr>
<tr>
<td>Discrete, 63</td>
</tr>
<tr>
<td>Discrete, 63</td>
</tr>
<tr>
<td>Linearity of variance, 88, 163</td>
</tr>
<tr>
<td>Linearity of variance, 88, 163</td>
</tr>
<tr>
<td>Little’s Law, 523</td>
</tr>
<tr>
<td>Little’s Law, 523</td>
</tr>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Loss probability, 250</td>
</tr>
<tr>
<td>Loss probability, 250</td>
</tr>
<tr>
<td>k-Select algorithm, 371</td>
</tr>
<tr>
<td>k-Select algorithm, 371</td>
</tr>
<tr>
<td>Randomized, 371</td>
</tr>
<tr>
<td>Randomized, 371</td>
</tr>
<tr>
<td>Knockout tournament algorithm, 400</td>
</tr>
<tr>
<td>Knockout tournament algorithm, 400</td>
</tr>
<tr>
<td>Kurtosis, 321</td>
</tr>
<tr>
<td>Kurtosis, 321</td>
</tr>
<tr>
<td>Laplace transform, 198</td>
</tr>
<tr>
<td>Laplace transform, 198</td>
</tr>
<tr>
<td>Conditioning, 203</td>
</tr>
<tr>
<td>Conditioning, 203</td>
</tr>
<tr>
<td>Cumulative distribution function, 205</td>
</tr>
<tr>
<td>Cumulative distribution function, 205</td>
</tr>
<tr>
<td>Inverting, 207</td>
</tr>
<tr>
<td>Inverting, 207</td>
</tr>
<tr>
<td>Linear, 203</td>
</tr>
<tr>
<td>Linear, 203</td>
</tr>
<tr>
<td>Linear transformation, 150, 172, 179</td>
</tr>
<tr>
<td>Linear transformation, 150, 172, 179</td>
</tr>
<tr>
<td>Linear of expectation</td>
</tr>
<tr>
<td>Continuous, 163</td>
</tr>
<tr>
<td>Continuous, 163</td>
</tr>
<tr>
<td>Discrete, 63</td>
</tr>
<tr>
<td>Discrete, 63</td>
</tr>
<tr>
<td>Linearity of variance, 88, 163</td>
</tr>
<tr>
<td>Linearity of variance, 88, 163</td>
</tr>
<tr>
<td>Little’s Law, 523</td>
</tr>
<tr>
<td>Little’s Law, 523</td>
</tr>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Loss probability, 250</td>
</tr>
<tr>
<td>Loss probability, 250</td>
</tr>
<tr>
<td>k-Select algorithm, 371</td>
</tr>
<tr>
<td>k-Select algorithm, 371</td>
</tr>
<tr>
<td>Randomized, 371</td>
</tr>
<tr>
<td>Randomized, 371</td>
</tr>
<tr>
<td>Knockout tournament algorithm, 400</td>
</tr>
<tr>
<td>Knockout tournament algorithm, 400</td>
</tr>
<tr>
<td>Kurtosis, 321</td>
</tr>
<tr>
<td>Kurtosis, 321</td>
</tr>
<tr>
<td>Laplace transform, 198</td>
</tr>
<tr>
<td>Laplace transform, 198</td>
</tr>
<tr>
<td>Conditioning, 203</td>
</tr>
<tr>
<td>Conditioning, 203</td>
</tr>
<tr>
<td>Cumulative distribution function, 205</td>
</tr>
<tr>
<td>Cumulative distribution function, 205</td>
</tr>
<tr>
<td>Inverting, 207</td>
</tr>
<tr>
<td>Inverting, 207</td>
</tr>
<tr>
<td>Linear, 203</td>
</tr>
<tr>
<td>Linear, 203</td>
</tr>
<tr>
<td>Linear transformation, 150, 172, 179</td>
</tr>
<tr>
<td>Linear transformation, 150, 172, 179</td>
</tr>
<tr>
<td>Linear of expectation</td>
</tr>
<tr>
<td>Continuous, 163</td>
</tr>
<tr>
<td>Continuous, 163</td>
</tr>
<tr>
<td>Discrete, 63</td>
</tr>
<tr>
<td>Discrete, 63</td>
</tr>
<tr>
<td>Linearity of variance, 88, 163</td>
</tr>
<tr>
<td>Linearity of variance, 88, 163</td>
</tr>
<tr>
<td>Little’s Law, 523</td>
</tr>
<tr>
<td>Little’s Law, 523</td>
</tr>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Load balancing, 182</td>
</tr>
<tr>
<td>Loss probability, 250</td>
</tr>
<tr>
<td>Loss probability, 250</td>
</tr>
</tbody>
</table>

For Bayesian estimators, 299
Median-Select, 371, 373
Memorylessness, 74, 139, 150, 211
Migrating jobs, 182
Migrating old jobs, 190
Miller–Rabin primality test, 410
Min of rolls, 80
Min-Cut algorithm, 389
Minimum
 Of Exponentials, 151, 215, 227
Minimum mean squared error, 295
MLE, 267
MMSE estimator, 295
 Minimizes MSE, 300
Modeling disk delay, 168
Moments of random variable, 83
Monte Carlo algorithms, 366, 383
 Amplification of confidence, 397
Monty Hall problem
 Original, 39
 Variants, 40
Mood chain, 451
Mouse in maze example, 112
 Infinite, 506
 With transforms, 130
Move-to-Front algorithm, 376
MSE, 257
 For Bayesian estimators, 299
 For MMSE estimator, 301
Multi-stage jobs, 227
Multiplication of monomials, 387, 388
Mutual funds, 107
Mutually exclusive events, 21
Negative Binomial
 Tail, 325
Negative Binomial distribution, 114
Network of workstations (NOW), 182
Noisy reading from flash storage, 56
Non-preemptive migration, 182
Normal approximation of Poisson, 179
Normal approximation of sum, 177
Normal distribution, 170
 Laplace transform, 207
 Linear transformation, 172
 Standard Normal, 170
 Tail, 325
Number of time pattern appears, 77
Nuts-and-bolts algorithm, 374
One-sided error, 385, 388
Packet corruption model, 38, 41
PageRank algorithm, 458
 Dead end, 461
 Spider trap, 461
Pairwise independence, 29, 38
Pareto distribution, 187, 192
Properties, 189
Why comes up, 194
Partition of space, 22, 31
Permutation, 12
Pittsburgh Supercomputing Center, 147
Point estimation, 255
Poisson approximation to Binomial, 55
Poisson distribution, 49
 Like Normal, 179
Poisson number of Exponentials, 205
Poisson process, 216, 225
 Independent increments, 217
 Merging processes, 220
 Number arrivals during service, 226
 Number of arrivals during service, 219
 Origin of, 216
 Poisson splitting, 221
 Stationary increments, 217
 Uniformity, 224
Polygon triangulation, 131
Population growth modeling, 228
Posterior
 Mean, 295
 Mode, 294
Power management, 533
Power of two choices, 341
Power-law distribution, 187
Preemptive migration, 182
Primality testing, 403
Prime Number Theorem, 403
Prior distribution, 287
Probabilistic method, 382
Probability density function, p.d.f., 134
 Joint p.d.f., 153
 Marginal p.d.f., 154
Probability mass function, p.m.f., 46
 Joint p.m.f., 50
 Marginal p.m.f., 51
Probability no collisions, 358
Probability on events, 22
Process migration, 182
Processor with failures, 508
Program analysis example, 424, 433
Program checking, 383
Quality of service, 164
Quality of Service (QoS), 98
Queueing network simulation, 240
Queueing theory, 510
 Arrival rate, 512
 Interarrival time, 512
 Job size, 512
 Kendall notation, 513
 Little’s Law, 523
 For red jobs, 529
 For waiting time, 527
 Maximum arrival rate, 533
 Number in system, 515
Index

Response time, 514
Service order, 512
Service rate, 512
Service requirement, 512
Slowdown, 537
Stability, 516
Throughput, 516
Utilization, 520
Utilization law, 528
Waiting time, 515

QuickSort
Deterministic, 367
Randomized, 368
Tail analysis, 378

R squared, 282
Ramanujan approximation, 361
Random graphs, 76
Number of edges, 76
Triangles, 77
Random prime, 418
Random variable, 44
Continuous, 134
Discrete, 45
With random parameters, 166, 208
Random variable conditioned on event
Conditional p.d.f., 145, 157
Conditional p.m.f., 67
Random walk, 450
Infinite, 490
On clique, 434
Randomized algorithms, 364
k-Select, 371
3-way fair coin, 374
And/or tree evaluation, 379
Approximate median, 399
Approximating \(\pi \), 395
Balls and bins, 337
Bloom filter hashing, 362
Bucket hashing, 351
Control group creation, 397
Cryptographic signature hashing, 355
Dominating set, 378
Fermat Primality Test, 408
Finding \(k \) largest, 377
Generating random permutation, 399
Generating random prime, 418
Hashing, 346
Independent set, 382
Knockout tournament, 400
Las Vegas, 366
Linear probing, 353
Making biased coin fair, 373
Matrix multiplication checking, 384
Max-3SAT, 395
Max-Cut, 396
Median-Select, 373
Miller–Rabin primality test, 410
Min-Cut, 389
Monte Carlo, 366, 383
Multiplication of monomials, 387, 388
Near Adder, 401
Nuts and bolts, 374
Primality testing, 403
Program checking, 383
QuickSort, 368
Ropes and cycles, 374
Uniform sampling from stream, 374
Versus deterministic algorithms, 364
Recurrence relations, 124, 131
Recurrent chain, 488, 491
Reliability, 151
Max of Exponentials, 226, 227
Max of Uniforms, 151
Min of Exponentials, 215
Remote execution, 182
Renewal process, 454
Renewal theorem, 454
Repair facility example, 422, 425, 432
Repair queue, 529
Rerouting IP flows, 193
Response time, 514
Reverse Markov flows, 320
Ropes and cycles, 374
Sample average squared error, 278
Sample mean, 180, 256, 327
Sample path, 451
Sample space, 21
Continuous, 21
Discrete, 21
Sample standard deviation, 264
Sample variance, 180
With known mean, 259
With unknown mean, 260, 263
Sampling from unknown distribution, 180
Sampling without replacement, 109
SASE, 278
Scheduling
Fairness and starvation, 193
Shortest Remaining Processing Time, 193
Scheduling web requests, 193
Security application, 226
Simpson’s paradox, 74
Simulation
Event-driven simulation, 240
Generating random variables, 229
SIR model, 436
Size interval task assignment, 251
Skew, 92
Slowdown, 537
Sojourn time, see Response time
Solving recurrences via generating functions, 125
Squared coefficient of variation, 87
Stability, 516
Standard deviation, 87
Stationary but not limiting, 501
Stationary distribution, 428, 429, 479
Stationary increments, 217
Stationary property, 421
Statistical inference, 253, 265
Stirling bounds, 14
Heuristic proof, 179
Stochastic process, 421
Stopping time, 114
Strong Law of Large Numbers, 452, 474
Subsets of \(n \) elements, 12
Sum of random number of r.v.s
 Geometric number of Exponentials, 207, 226
 With transforms, 123, 129, 204
Sum of random number of random variables, 113
 Mean, 93
 Variance, 95
Sum of random variables
 Binomials, 55
 Continuous, 165
 Laplace transforms, 203
 Normals, 175, 208
 Poissons, 128
 \(z \)-transforms, 121
Sum of series, 2
Sunday colt, 36
SYNC project, 193
Tail bound, 307
Tail of random variable, 46, 97, 136
 Geometric, 78
 Negative Binomial, 325
 Normal, 325
Tail probability, 306
Taylor series, 9
TCP flow scheduling, 193
Threshold queue, 501
Throughput, 516
Time average, 450
Time in system, see Response time
Time reversibility, 467, 468, 473, 477
Time to empty, 498, 499
Time until \(k \) heads, 79, 501
Total variation distance, 115
Transforming p.d.f., 151
Transient chain, 489, 491
Tree growth, 96
Two-offspring example
 Extra information, 36
 Original, 25
Umbrella problem example, 423, 425, 433
Unbiased estimator, 180, 256
Unbounded queue example, 480
Uniform distribution, 137
Uniform sampling from stream, 374
Union bound, 23, 338
UNIX process lifetime, 183
 Empirical measurements, 186
Unreliable network, 28
Utilization, load, 520
Vandermonde’s identity, 14
Variance
 Alternative definitions, 86
 Bernoulli, 85
 Continuous r.v., 141
 Discrete r.v., 85
 Equivalent definition, 88
Variance and risk, 107
Variance estimator
 With known mean, 259
 With unknown mean, 260
Variance of difference, 107
Variance of sum, 89, 107, 108
Variance–bias decomposition, 263
Virus propagation, 79
Wald’s equation, 114
Walk on undirected weighted graph, 474
Weak Law of Large Numbers, 323
Web file sizes, 193
Which Exponential happens first, 156, 158
Which Geometric happens first, 52, 53
Wireless session times, 193
With high probability, 338, 378
Witness, 384
 Divisor witness, 403, 405
 Fermat witness, 405
 Gcd witness, 407
 Root witness, 411
Worst-case analysis, 364, 370
\(z \)-transform, 117
 Binomial, 118
 Conditioning, 123
 Geometric, 118
 Linearity, 121
 Moments, 120
Solving recurrence relations, 124, 131, 508
Sum of random number of r.v.s, 123, 204
Uniqueness, 130