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8 Continuous Random

Variables: Joint

Distributions

In the previous chapter, we studied individual continuous random variables. We

now move on to discussing multiple random variables, which may or may not

be independent of each other. Just as in Chapter 3 we used a joint probabil-

ity mass function (p.m.f.), we now introduce the continuous counterpart, the

joint probability density function (joint p.d.f.). We will use the joint p.d.f. to

answer questions about the expected value of one random variable, given some

information about the other random variable.

8.1 Joint Densities

When dealing with multiple continuous random variables, we can define a joint

p.d.f. which is similar to the joint p.m.f. in Definition 3.4.

Definition 8.1 The joint probability density function between continuous

random variables - and . is a non-negative function 5-,. (G, H), where

∫ 3

2

∫ 1

0

5-,. (G, H)3G3H = P {0 ≤ - ≤ 1 & 2 ≤ . ≤ 3}

and where
∫ ∞

−∞

∫ ∞

−∞

5-,. (G, H)3G3H = 1.

Definition 8.1 is illustrated in Figure 8.1.

Example 8.2 (Height and weight of two-year-olds)

Let’s say that two-year-olds range in weight from 15 pounds to 35 pounds and

range in height from 25 inches to 40 inches. Let , be a r.v. denoting the weight

of a two-year-old, and � be a r.v. denoting the height. Let 5,,� (F, ℎ) denote the

joint density function of weight and height.
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Figure 8.1 Volume under the curve shows P {0 ≤ - ≤ 1 & 2 ≤ . ≤ 3}.

Question: What is the fraction of two-year-olds whose weight exceeds 30 pounds,

but whose height is less than 30 inches?

Answer:
∫ ℎ=30

ℎ=−∞

∫ F=∞

F=30

5,,� (F, ℎ)3F3ℎ =

∫ ℎ=30

ℎ=25

∫ F=35

F=30

5,,� (F, ℎ)3F3ℎ.

These are equivalent because the joint density function is only non-zero in the

range where 15 ≤ F ≤ 35 and 25 ≤ ℎ ≤ 40.

We can also integrate the joint p.d.f. over just one variable to get a marginal p.d.f.

Definition 8.3 The marginal densities, 5- (G) and 5. (H), are defined as:

5- (G) =

∫ ∞

−∞

5-,. (G, H)3H

5. (H) =

∫ ∞

−∞

5-,. (G, H)3G.

Note that 5- (G) and 5. (H) are densities and not probabilities.

Question: If 5,,� (F, ℎ) is the joint p.d.f of weight and height in two-year-olds,

what is the fraction of two-year-olds whose height is exactly 30 inches?

Answer: The event of having height exactly 30 inches is a zero-probability event,

so the answer is zero. We could write
∫ F=∞

F=−∞

5,,� (F, 30)3F = 5� (30), by Definition 8.3,

but, again, this is a density and hence has zero probability.
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Finally, as in Definition 3.3, we can define independence for continuous random

variables.

Definition 8.4 We say that continuous random variables - and . are inde-

pendent, written - ⊥ . , if

5-,. (G, H) = 5- (G) · 5. (H) ∀G, H.

Example 8.5 (Joint p.d.f.)

Let

5-,. (G, H) =

{

G + H if 0 ≤ G, H ≤ 1

0 otherwise
.

Note that 5-,. (G, H) is a proper density in that
∫ 1

0

∫ 1

0
5-,. (G, H)3G3H = 1.

Question: (a) What is E [-]? (b) Is - ⊥ .?

Answer:

(a) To derive E [-], we first derive 5- (G). We do this using Definition 8.3.

5- (G) =

∫ H=∞

H=−∞

5-,. (G, H)3H =

∫ H=1

H=0

(G + H)3H = G +
1

2

E [-] =

∫ G=∞

G=−∞

5- (G) · G3G =

∫ 1

G=0

(

G +
1

2

)

· G3G =
7

12
.

(b) We will show that - and . are not independent, using Definition 8.4:

5- (G) =

∫ H=∞

H=−∞

5-,. (G, H)3H = G +
1

2
for 0 ≤ G ≤ 1

5. (H) =

∫ G=∞

G=−∞

5-,. (G, H)3G = H +
1

2
for 0 ≤ H ≤ 1.

Hence, clearly,

5-,. (G, H) ≠ 5- (G) · 5. (H).

Example 8.6 (Joint p.d.f. for independent random variables)

Question: What is an example of a joint p.d.f. where - and . are independent?

Answer: Let

5-,. (G, H) =

{

4GH if 0 ≤ G, H ≤ 1

0 otherwise
.
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Again, this is a proper p.d.f., since it integrates to 1. Furthermore:

5- (G) =

∫ 1

H=0

4GH3H = 2G for 0 ≤ G ≤ 1

5. (H) =

∫ 1

G=0

4GH3G = 2H for 0 ≤ H ≤ 1.

Hence,

5-,. (G, H) = 5- (G) · 5. (H)

as desired.

Example 8.7 (Which Exponential happens first?)

Suppose that the time until server 1 crashes is denoted by - ∼ Exp(_) and the

time until server 2 crashes is denoted by . ∼ Exp(`). We want to know the

probability that server 1 crashes before server 2 crashes. Assume that - ⊥ . .

The goal is thus P {- < . }. We will show how to do this by integrating the joint

density function between - and . :

P {- < . } =

∫ ∞

G=0

∫ ∞

H=G

5-,. (G, H)3H3G

=

∫ ∞

G=0

∫ ∞

H=G

5- (G) · 5. (H)3H3G

=

∫ ∞

G=0

_4−_G ·

∫ ∞

H=G

`4−`H3H3G

=

∫ ∞

G=0

_4−_G · 4−`G3G

= _

∫ ∞

G=0

4−(_+`)G3G

=
_

_ + `
.

Question: Where did we use the fact that - ⊥ .?

Answer: We used independence in splitting the joint p.d.f. in the second line.

8.2 Probability Involving Multiple Random Variables

We can use the joint p.d.f. to derive expectations involving multiple random

variables, via Definition 8.8.
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Definition 8.8 Let - and . be continuous random variables with joint p.d.f.

5-,. (G, H). Then, for any function 6(- ,. ), we have

E [6(- ,. )] =

∫ ∞

−∞

∫ ∞

−∞

6(G, H) · 5-,. (G, H)3G3H.

We can also use the joint p.d.f. to define the conditional p.d.f. involving two

continuous random variables, thus extending Definition 7.15.

Definition 8.9 (Conditional p.d.f. and Bayes’ Law: two random variables)

Given two continuous random variables, - and . , we define the conditional

p.d.f. of r.v. - given event . = H as:

5- |.=H (G) =
5-,. (G, H)

5. (H)
=

5. |-=G (H) · 5- (G)

5. (H)
=

5. |-=G (H) · 5- (G)
∫

G
5-,. (G, H)3G

.

The first equality in Definition 8.9 is just the definition of a conditional p.d.f.,

where now we’re conditioning on a zero-probability event, . = H. The second

equality is a reapplication of the first equality, but this time with - and .

interchanged. The result is a Bayes’ Law, akin to that in Definition 7.15.

Observe that the conditional p.d.f. is still a proper p.d.f. in the sense that:
∫

G

5- |.=H (G) = 1.

Recall the Law of Total Probability for continuous random variables from The-

orem 7.13, which we have repeated below in Theorem 8.10 for easy reference.

Theorem 8.10 (Law of Total Probability: Continuous) Given any event �

and any continuous r.v.,. , we can compute P {�} by conditioning on the value

of . as follows:

P {�} =

∫ ∞

−∞

5. (H ∩ �)3H =

∫ ∞

−∞

P {� | . = H} 5. (H)3H.

Here, 5. (H ∩ �) denotes the density of the intersection of the event � with

. = H.

Analogously to Theorem 8.10, we can express a density of one r.v. by conditioning

on another r.v., as shown in Theorem 8.11.
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Theorem 8.11 (Law of Total Probability: Multiple Random Variables)

Let - and . be continuous random variables. Then:

5- (G) =

∫

H

5-,. (G, H)3H =

∫

H

5- |.=H (G) 5. (H)3H.

As a starting example, let’s revisit Example 8.7 and show how it can be solved

more simply by conditioning.

Example 8.12 (Which Exponential happens first – revisited)

Suppose that the time until server 1 crashes is denoted by - ∼ Exp(_) and the

time until server 2 crashes is denoted by . ∼ Exp(`). We want to know the

probability that server 1 crashes before server 2 crashes. Assume that - ⊥ . .

The goal is thus P {- < . }. This time, we derive the quantity by conditioning

on the value of - , as follows:

P {- < . } =

∫ ∞

0

P {- < . | - = G} · 5- (G)3G

=

∫ ∞

0

P {. > G | - = G} · _4−_G3G

=

∫ ∞

0

P {. > G} · _4−_G3G

=

∫ ∞

0

4−`G · _4−_G3G

= _

∫ ∞

0

4−(_+`)G3G =
_

_ + `
.

Question: Where did we use the fact that - ⊥ .?

Answer: We used independence to claim that P {. > G | - = G} = P {. > G};

here we assumed that the fact that - = G has no effect on the value of . .

Now let’s consider a more involved example.

Example 8.13 (Relationship between hand-in time and grade)

[Parts of this problem are borrowed from [51]] As a professor, I’m curious about

whether there’s a relationship between the time when a student turns in their

homework and the grade that the student receives on the homework.Let) denote

the amount of time prior to the deadline that the homework is submitted. I have

noticed that no one ever submits the homework earlier than two days before the
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homework is due, so 0 ≤ ) ≤ 2. Let � denote the grade that the homework

receives, viewed as a percentage, meaning 0 ≤ � ≤ 1. Both � and ) are

continuous random variables. Suppose their joint p.d.f. is given by

5�,) (6, C) =
9

10
C62 +

1

5
, where 0 ≤ 6 ≤ 1 and 0 ≤ C ≤ 2.

Question:

(a) What is the probability that a randomly selected student gets a grade above

50% on the homework?

(b) What is the probability that a student gets a grade above 50%, given that the

student submitted less than a day before the deadline?

Answer: It’s easiest to start this problem by determining the marginal density

function 5� (6). We will determine 5) (C) as well, for future use:

5� (6) =

∫ C=2

C=0

5�,) (6, C)3C =

∫ C=2

C=0

(

9

10
C62 +

1

5

)

3C =
9

5
· 62 +

2

5
(8.1)

5) (C) =

∫ 6=1

6=0

5�,) (6, C)36 =

∫ 6=1

6=0

(

9

10
C62 +

1

5

)

36 =
3

10
· C +

1

5
. (8.2)

To understand the probability that a randomly selected student gets a grade above

50% on the homework, we want P
{

� > 1
2

}

. We can directly use 5� (6) to get

this as follows:

P

{

� >
1

2

}

=

∫ 6=1

6= 1
2

5� (6)36 =

∫ 6=1

6= 1
2

(

9

5
· 62 +

2

5

)

36 =
29

40
= 0.725.

To understand the probability that a student gets a grade above 50%, given that the

student submitted less than a day before the deadline, we want P
{

� > 1
2

�

� ) < 1
}

:

P

{

� >
1

2

�

�

� ) < 1

}

=
P {� > 0.5 & ) < 1}

P {) < 1}

=

∫ 6=1

6=0.5

∫ C=1

C=0
5�,) (6, C)3C36

∫ C=1

C=0
5) (C)3C

=

∫ 6=1

6=0.5

∫ C=1

C=0

(

9
10
C62 + 1

5

)

3C36

∫ C=1

C=0

(

3
10

· C + 1
5

)

3C

=
0.23125

0.35
= 0.66.
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8.3 Pop Quiz

Density functions can be tricky. Below we quickly summarize what we’ve learned

in the form of a pop quiz. Throughout, assume that - and . are continuous

random variables with joint density function

5-,. (G, H), where −∞ < G, H < ∞.

Question: What are the marginal densities 5- (G) and 5. (H)?

Answer:

5- (G) =

∫ H=∞

H=−∞

5-,. (G, H)3H 5. (H) =

∫ G=∞

G=−∞

5-,. (G, H)3G.

Question: What is the conditional density 5- |.=H (G)? How about 5. |-=G (H)?

Answer:

5- |.=H (G) =
5-,. (G, H)

5. (H)
(8.3)

5. |-=G (H) =
5-,. (G, H)

5- (G)
(8.4)

Question: How can we write 5- |.=H (G) in terms of 5. |-=G (H)?

Answer: If we substitute 5-,. (G, H) from (8.4) into (8.3), we get:

5- |.=H (G) =
5-,. (G, H)

5. (H)
=

5. |-=G (H) · 5- (G)

5. (H)
.

Question: How do we write P {- < 0 | . = H}?

Answer: This is just a question of summing up the conditional density 5- |.=H (G)

over all values of G where G < 0:

P {- < 0 | . = H} =

∫ G=0

G=−∞

5- |.=H (G)3G.

Question: How do we write 5. |.<0 (H) in terms of 5. (H)?

Answer: Intuitively, we’re just conditioning on the event that . < 0, which

narrows the range of values, so the conditional density gets scaled up by a
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constant factor. Here are all the steps. Let � denote the event that . < 0. Then:

5. |.<0 (H) = 5. |�(H)

=
5. (H ∩ �)

P {�}

=
5. (H ∩ . < 0)

P {. < 0}

=

{

5. (H)

P{.<0}
if H < 0

0 otherwise
.

Question: How do we write 5. |-<0 (H) in terms of 5-,. (G, H)?

Answer: In the case of 5. |-<0 (H), we define � to be the event that - < 0. Now

we are conditioning on an event � that doesn’t involve . . Because of this, we

can’t simply scale up the density function, and we must instead return to the joint

density. Then the steps are as follows:

5. |-<0 (H) = 5. |�(H)

=
5. (H ∩ �)

P {�}

=
5. (H ∩ - < 0)

P {- < 0}

=

∫ G=0

G=−∞
5-,. (G, H)3G

P {- < 0}
.

8.4 Conditional Expectation for Multiple Random Variables

We now move on to expectation. We will extend the definitions from Section 7.5

on conditional expectation to multiple random variables. As before, the key to

defining conditional expectation is to use a conditional p.d.f.

Definition 8.14 Given continuous random variables - and . , we define:

E [- | . = H] =

∫

G

G · 5- |.=H (G)3G.

A typical situation where Definition 8.14 might come up is in computing the

expected weight of two-year-olds if their height is 30 inches. Another way in

which Definition 8.14 is useful is that it allows us to simplify computations of

expectation by conditioning, as in Theorem 8.15.
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Theorem 8.15 We can derive E [-] by conditioning on the value of a contin-

uous r.v. . as follows:

E [-] =

∫

H

E [- | . = H] · 5. (H)3H.

Theorem 8.15 is the direct continuous counterpart to Theorem 4.22. The proof

of Theorem 8.15 follows the same lines as that of Theorem 4.22, except that we

use Definition 8.14 in place of Definition 4.18.

Let’s now return to Example 8.13, this time from the perspective of expectation.

Example 8.16 (Relationship between hand-in time and grade, continued)

Let ) denote the number of days prior to the deadline that the homework is

submitted. No one ever submits the homework earlier than two days before the

homework is due, so 0 ≤ ) ≤ 2. Let � denote the grade that the homework

receives, viewed as a percentage, meaning 0 ≤ � ≤ 1. Both � and ) are

continuous random variables. Their joint p.d.f. is given by

5�,) (6, C) =
9

10
C62 +

1

5
.

Question: A random student submits at ) = 0, that is, exactly when the home-

work is due. What is the student’s expected grade?

Answer:

E [� | ) = 0] =

∫ 1

6=0

6 · 5� |)=0(6)36 by Definition 8.14

=

∫ 1

6=0

6
5�,) (6, 0)

5) (0)
36 by Definition 8.9

=

∫ 1

6=0

6

1
5

1
5

36

=
1

2
. (8.5)

Question: Who has a higher expected grade: a student who submits exactly when

the homework is due, or a student who submits more than 1 day early?

Answer: To answer this, we must compare E [� | ) = 0] from (8.5) with

E [� | 1 < ) < 2].
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We derive E [� | 1 < ) < 2] in the same way as we derived E [� | ) = 0]:

E [� | 1 < ) < 2] =

∫ 1

6=0

6 5� |1<)<2 (6)36 by Definition 7.17

=

∫ 1

6=0

6
5� (6 ∩ (1 < ) < 2))

P {1 < ) < 2}
36 by Definition 7.15

=

∫ 1

6=0

6

∫ C=2

C=1
5�,) (6, C)3C

∫ C=2

C=1
5) (C)3C

36

=

∫ 1

6=0

6

∫ C=2

C=1

(

9
10
C62 + 1

5

)

3C

∫ C=2

C=1

(

3
10
C + 1

5

)

3C
36 5) (C) is from (8.2)

=

∫ 1

6=0

6

1
20

(

2762 + 4
)

0.65
36

= 0.673.

So the expected grade is higher for those who turn in their homework more than

a day early, as compared with those who turn in their homework exactly on time.

This makes sense!

8.5 Linearity and Other Properties

In this chapter and the prior one on continuous random variables, we have

not bothered to repeat all the prior results that we saw for discrete random

variables, such as Linearity of Expectation (Theorem 4.10), Linearity of Variance

(Theorem 5.8), and Expectation of a Product (Theorem 4.8). However, all of

these results extend to continuous random variables as well. The proofs are

straightforward and are deferred to the exercises.

8.6 Exercises

8.1 Linearity of expectation for continuous random variables

Let - and . be continuous random variables. Prove that

E [- + . ] = E [-] + E [. ] .
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8.2 Product of continuous random variables

Let - and . be continuous random variables, where - ⊥ . . Prove that

E [-. ] = E [-] · E [. ] .

8.3 Two Uniforms

Let - ∼ Uniform(0, 1) and . ∼ Uniform(0, 2) be independent random

variables. What is P {- ≤ . }?

(a) Solve this via the joint p.d.f. of - and . .

(b) Solve this by conditioning on - .

8.4 Quality of service

A company pays a fine if the time to process a request exceeds 7 seconds.

Processing a request consists of two tasks: (a) retrieving the file, which

takes some time - that is Exponentially distributed with mean 5; and (b)

processing the file, which takes some time . that is independent of - and

is distributed Uniform(1, 3). Given that the mean time to process a request

is clearly 7 seconds, the company views the fine as unfair, because it will

have to pay the fine on half its requests. Is this right? What is the actual

fraction of time that the fine will have to be paid?

8.5 Meeting up

Eric and Timmy have agreed to meet between 2 and 3 pm to work on

homework. They are rather busy and are not quite sure when they can arrive,

so assume that each of their arrival times is independent and uniformly

distributed over the hour. Each agrees to wait 15 minutes for the other, after

which he will leave. What is the probability that Eric and Timmy will be

able to meet?

8.6 Practice with joint random variables

Let - and. be continuous random variables with the following joint p.d.f.

5-,. (G, H) =

{

4−G if 0 ≤ H ≤ G

0 otherwise
.

(a) Start by drawing the region ' where the joint p.d.f. is non-zero. This

will help you determine the limits of integration for the remaining

parts.

(b) What is 5- (G)? State the region over which this p.d.f. is non-zero.

(c) What is 5. (H)? State the region over which this p.d.f. is non-zero.

(d) What is 5. |-=G (H), where G > 0? State the region over which this p.d.f.

is non-zero.

(e) What is E [. | - = G], where G > 0?
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8.7 Distance between darts

We are given a line segment, [0, 1]. Kristy and Timmy each independently

throw a dart uniformly at random within the line segment. What is the

expected distance between Kristy’s and Timmy’s darts?

8.8 Comparison of two darts

We are given a line segment, [0, 1]. Two darts are each independently

thrown uniformly at random within the line segment. What is the probability

that the value of one dart is at least three times the value of the other?

8.9 Sum of independent random variables

The convolution of two functions 5 (·) and 6(·) is defined as

5 ◦ 6(I) =

∫ ∞

−∞

5 (I − G)6(G)3G.

Let - and . be two independent continuous random variables. Define a

new r.v. / = - +. . In this problem, you will show that the p.d.f. of / is the

convolution of the probability density functions of - and . . Follow these

steps:

(a) Show that �/ (I) =
∫ I

−∞

∫ ∞

−∞
5- (G) · 5. (C − G)3G3C.

(b) Differentiate �/ (I) to obtain 5/ (I).

[Hint: You will need to invoke the Fundamental Theorem of Calculus from

Section 1.3.]

8.10 Bear problem

[Proposed by Weina Wang] You stand at a position - ∼ Exp(1) on the

line. Your friend stands at position . ∼ Exp(2). Assume that - and . are

independent. A bear comes from the left. The bear will eat the first person it

comes to; however, if the distance between you and your friend is < 1, then

the bear will eat both of you. What is the probability that you get eaten?

0

Figure 8.2 Figure for Exercise 8.10.

8.11 Bayes of our lives

The number of seasons in a television series is # ∼ Geometric(%). After

each season, there is a fixed probability, %, that the series is canceled.

However, the parameter % depends on the popularity of the series, so
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we don’t know what it is in general. For a new series, we assume that

% ∼ Uniform(0, 1). A television series has been running for 37 seasons (and

renewed for more). Derive the expected value of %, given this information,

that is, derive E [% | # > 37].

8.12 Density of choice

Suppose that - and . are continuous random variables and let

/ =

{

- w/prob ?

. w/prob 1 − ?
.

(a) Derive the p.d.f. of / in terms of the probability density functions of

- and . .

(b) The Double Exponential distribution is defined via the random variable

, , where , = () and ) ∼ Exp(_) and ( is a discrete r.v. with equal

probability of being 1 or −1. Use part (a) to derive the p.d.f. of , .

8.13 When the parameters of a distribution are random variables

There are many situations where the parameters of a distribution are

themselves random variables. For example, let - ∼ Exp(_) and . ∼

Uniform(0, -). (a) What is E [. ]? (b) What is Var(. )?

8.14 Smallest interval

A dart is thrown uniformly at random at the unit interval [0, 1]. The dart

splits the interval into two segments, one to its right and one to its left.

What is the expected length of the smaller segment?

8.15 Smallest interval with two darts

Two independent darts are thrown uniformly at random at the unit interval

[0, 1]. The two darts naturally split the interval into three segments. Let

( be the length of the smallest segment. What is E [(]? [Hint: There are

several ways to solve this problem. A good way to start is to derive the tail

of (, and then integrate the tail to get E [(], as in Exercise 7.9. To get the

tail, it may help to draw a 2D picture of where each of the darts is allowed

to fall.]

8.16 Different views on conditional expectation

[Proposed by Misha Ivkov] Let - ∼ Uniform(0, 1) and. ∼ Uniform(0, 1).

Our goal is to understand

E [- | - + . = 1.5] .

(a) Dong makes the realization that - +. = 1.5 implies that - = 1.5 − . .

He then reasons that

E [- | - +. = 1.5] = E [1.5 − . ] .
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What’s the result via Dong’s approach? Is Dong right? Why or why

not?

(b) Lisa suggests that one should first compute the conditional den-

sity function, 5- |-+.=1.5(G), using Definition 8.14 and then use

that to get E [- | - +. = 1.5]. Follow Lisa’s approach to derive

E [- | - +. = 1.5].

(c) Misha believes that pictures are the only way to prove things. Draw a

2D plot that allows you to understand E [- | - +. = 1.5].

8.17 Hiring for tech

At a popular tech company, candidates are rated on two axes: technical skills

()) and communication skills (�). The values of ) and � can in theory be

any real number from 0 (worst) to 1 (best). In practice, however, it never

happens that a candidate gets a rating of less than 0.5 in both categories

(that’s just too harsh), so candidate scores actually fall within region ' in

Figure 8.3(a). Assume that candidate scores are uniformly distributed over

region ', as shown in Figure 8.3(b).

(a) Region R

1

1.00.5

c

0

0.5

tt

R

t
1.00.5

t

c

0

fT,C (t,c)

(b) Joint density function fT,C (t,c)

Figure 8.3 For Exercise 8.17.

(a) What is the joint density function 5) ,� (C, 2)?

(b) What is the marginal p.d.f. of ) , that is, 5) (C)?

(c) What is E [� | ) < 0.75]? (Write out the full conditional density and

then integrate it appropriately.)

8.18 On the probability of a triangle

Suppose we have an interval of length 1. We throw two darts at the interval

independently and uniformly at random. The two darts divide our inter-

val into three segments. We want to know the probability that the three

segments form a triangle.

(a) Describe the criterion we need in order to achieve our goal.

(b) If the first dart lands at G ∈ [0, 1
2
], what’s the probability that the

resulting segments give us a triangle?

(c) What is the probability that the three segments form a triangle?
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8.19 Relating laptop quality to lifetime

[Proposed by Weina Wang] You have a laptop whose quality is represented

by & ∼ Uniform(1, 2), with a larger number representing higher quality.

Laptops with higher quality have higher expected lifetimes. Let - be the

lifetime of the laptop in years (assume this ranges from 0 to ∞). We are

told that, given that & = @, the lifetime of the laptop is - ∼ Exp
(

1
@

)

for

1 ≤ @ ≤ 2.

(a) Assume 1 ≤ @ ≤ 2. What is 5- |&=@ (G)? What is E [- | & = @]?

(b) What is the joint p.d.f. 5-,& (G, @)?

(c) Suppose your laptop is still working after one year. What is the expected

quality of your laptop given that fact?

[Note: In your final expression, you will get some integrals that you

can’t compute. Here are approximations to use:
∫ 2

1
C4−

1
C 3C ≈ 0.78 and

∫ 2

1
4−

1
C 3C ≈ 0.5.]

8.20 Gambling at the casino

[Proposed by Weina Wang] Your friend Alice is visiting Las Vegas and

takes - dollars to a casino, where - ∼ Uniform(10, 20). At the end of

the day, she brings back . dollars. Given that she takes - = G dollars, the

density of . is

5. |-=G (H) =

{

−
H

2G2 +
1
G

if 0 ≤ H ≤ 2G

0 otherwise
.

(a) What is Alice’s expected return from gambling, that is, E [. − -]? The

following steps will help:

(i) Derive E [-]. This is uncomplicated.

(ii) Derive E [. | - = G].

(iii) Use (ii) to derive E [. ].

(iv) Derive E [. ] − E [-].

(b) Suppose you know that Alice wins at gambling. What is the expectation

of the amount of money she takes to the casino? [Hint: The problem is

asking for E [- | . > -]. To get this, you will need 5- |.>- (G).]

8.21 Modeling expected disk delay

The delay to read a single byte from a hard disk consists of two components:

(1) seek time – this is the time needed to move the disk head to the desired

track; and (2) rotation time – this is the time needed to rotate the disk head

on the track to reach the desired byte (Figure 8.4). Suppose that bytes are

uniformly distributed across the disk. Let ) be a r.v. denoting the time to

reach a single (randomly located) byte. Your goal is to compute E [)].

Assume that the disk has radius A (a constant). Assume that the tracks are

infinitely thin. Assume the disk head starts from wherever the last byte was

read. Assume that the time to traverse the full radius A is 15 ms. At all
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r

Diskhead

Figure 8.4 For Exercise 8.21. A disk with radius A. Each circle represents a track. The

red square (on the inner track) shows the byte most recently read. The blue square (on the

outer track) shows the next byte requested. To read the blue byte, the disk head first seeks

to the outer track of the blue byte and then waits for the disk to rotate to the correct byte.

times, the disk rotates at 6,000 RPM (rotations per minute) in one direction

only. Provide your final answer in ms. [Hint: Outer tracks hold more bytes

than inner ones.]

8.22 Hula hoop cutting

You are holding a hula hoop of unit radius with your hand at its top (12

o’clock; Figure 8.5). In a moment, two points on the hoop will be selected

uniformly at random, and the hoop will be cut at those points, splitting it

into two arcs.

Stays

Falls

Figure 8.5 For Exercise 8.22. The cuts create two arcs: a pink one that you’re holding,

and a purple one that falls.

(a) Compute the expected value of the angular difference between the two

arcs.

(b) When the cuts are made, one arc falls to the ground while the other

one stays in your hand. What is the probability that you are holding the

larger arc?


