1 Review

Last class, the emphasis was on finding the limiting distribution.

This class, the emphasis will be on when the limiting distribution exists.

Review: Stationary distribution versus Limiting distribution

Theorem 8.6: Given a finite-state DTMC with M states: IF the limiting distrib $\vec{\pi}$ exists, THEN $\vec{\pi}$ is the unique stationary distrib.

Theorem 8.8: Given an infinite-state DTMC:

IF the limiting distrib $\vec{\pi}$ exists, THEN $\vec{\pi}$ is the unique stationary distrib.

2 The three questions of Chpt 9

- 1. Under what conditions does the limiting distribution exist?
- 2. What can we say about m_{jj} , the mean time between visits to state j, and how this is related to π_j ?
- 3. How does π_j , the limiting probability of being in state j, compare with p_j , the long-run time-average fraction of time spent in state j?

TODAY: Only finite-state chains.

NEXT WEEK: Infinite-state chains.

3 Under what conditions does the Limiting Distribution Exist?

1. Show a 2-state DTMC for which the limiting distribution does not exist. Does the stationary distribution exist? What does it represent?

2. Show a 2-state DTMC for which the limiting distribution does not exist. Does the stationary distribution exist? What does it represent?

4 Definitions

The **period** of state j is ...

State j is **aperiodic** if ...

Markov Chain is $\bf aperiodic$ if ...

Question: Why is this the right definition of aperiodic?

5 Definitions, cont.	
State j is accessible from state i if	
States i and j communicate if	
A Markov chain is irreducible if	

Question: Is Aperiodicity + Irreducibility sufficient to guarantee limiting distribution exists?

6 THEOREM 9.4

We will now show: For finite state chain:

Aperiodic + Irreducible \Longrightarrow Limiting Distribution Exists.

Question: Are aperiodicity and irreducibility necessary for the limiting distrib to exist?

Theorem 9.4: Given an <u>aperiodic & irreducible</u>, finite-state DTMC with matrix **P**.

As $n \to \infty$, $\mathbf{P}^n \to \mathbf{L}$, where \mathbf{L} is a matrix whose rows are all vector $\vec{\pi}$. The vector $\vec{\pi}$ has all positive components, summing to 1.

EXAMPLE:

$$\mathbf{P} = \begin{pmatrix} 1/2 & 1/3 & 1/6 \\ 1/3 & 1/3 & 1/3 \\ 1/8 & 3/4 & 1/8 \end{pmatrix} \qquad \mathbf{P}^n \to \mathbf{L} = \begin{pmatrix} 0.34 & 0.43 & 0.23 \\ 0.34 & 0.43 & 0.23 \\ 0.34 & 0.43 & 0.23 \end{pmatrix}$$

PROOF: Rephrase Goal in terms of jth column:

Theorem 9.4: Given an <u>aperiodic & irreducible</u>, finite-state DTMC with matrix **P**.

As $n \to \infty$, $\mathbf{P}^n \to \mathbf{L}$, where \mathbf{L} is a matrix whose rows are all vector $\vec{\pi}$. The vector $\vec{\pi}$ has all positive components, summing to 1.

EXAMPLE:

$$\mathbf{P} = \begin{pmatrix} 1/2 & 1/3 & 1/6 \\ 1/3 & 1/3 & 1/3 \\ 1/8 & 3/4 & 1/8 \end{pmatrix} \qquad \mathbf{P}^n \to \mathbf{L} = \begin{pmatrix} 0.34 & 0.43 & 0.23 \\ 0.34 & 0.43 & 0.23 \\ 0.34 & 0.43 & 0.23 \end{pmatrix}$$

REPHRASE GOAL:

$$\vec{e} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, where the 1 is in the *j*th position. Then STS: ______

INTUITION for why makes sense:

Let M_n denote the Maximum component of $\mathbf{P}^n \vec{e}$. Let m_n denote the minimum component of $\mathbf{P}^n \vec{e}$.

<u>CLAIM 1:</u> Let s be smallest element in **P**. Then

$$M_n - m_n \le (1 - 2s) (M_{n-1} - m_{n-1}).$$

PROOF:

1. Upper bound on M_n :

2. Lower bound on m_n :

Question:	The proof is com	plete except i	for small hole.	What's the hole?
How to fix	it?			
The hole:				
mı e				
The fix:				
Why the	fix completes th	e proof:		
vviiy tile	nx completes in	e proor.		

Commercial Break: Announcements

- 1. NO CLASS this FRIDAY!
- 2. DROP OFF HW3 at Mor's Office (GHC 7207) at 2 pm on Friday.
- 3. Mor has office hours today: GHC 7207, from 5:30 p.m. 7 p.m.
- 4. Schedule a time to talk to me about a queueing application. If you can't think of any queueing problem, then look for a Markov Chain application.

CLAIM 2:

P: aperiodic, irreducible $\Longrightarrow \exists n_0, \text{ s.t.}, \forall n \geq n_0, \mathbf{P}^n \text{ has only positive elts.}$

PROOF:

CLAIM 2:

P: aperiodic, irreducible $\Longrightarrow \exists n_0, \text{ s.t.}, \forall n \geq n_0, \mathbf{P}^n \text{ has only positive elts.}$

PROOF cont.:

7 Mean Time between Visits in Finite-State Chain

 $m_{ij} = \text{expected } \# \text{ time steps needed to first get to state } j$, given we're currently in i.

<u>Lemma:</u> For an irreducible, finite-state Markov chain, $m_{ij} < \infty$, $\forall i, j$. (See HW 4)

<u>Theorem 9.6</u>: For an <u>irreducible</u>, aperiodic finite-state Markov chain. Let $\pi_j = \lim_{n \to \infty} (\mathbf{P})_{ij}^n$. Then

$$\pi_j = \frac{1}{m_{jj}}.$$

PROOF:

1. Start by writing an expression for m_{ij} and m_{jj} .

2. Let **M** be a matrix whose (i, j)th element is m_{ij} .

$$\mathbf{M} = \left[\begin{array}{cccc} m_{00} & m_{01} & m_{02} \\ \\ m_{10} & m_{11} & m_{12} \\ \\ m_{20} & m_{21} & m_{22} \end{array} \right]$$

Let **D** be a matrix whose entries are all 0, except for its diagonal entries: $d_{ij} = m_{jj}$.

$$\mathbf{D} = \begin{bmatrix} m_{00} & 0 & 0 \\ 0 & m_{11} & 0 \\ 0 & 0 & m_{22} \end{bmatrix}$$

Let **N** be a matrix whose diagonal entries are all 0, but where $N_{ij} = m_{ij}$.

$$\mathbf{N} = \begin{bmatrix} 0 & m_{01} & m_{02} \\ m_{10} & 0 & m_{12} \\ m_{20} & m_{21} & 0 \end{bmatrix}$$

Let \mathbf{E} be a matrix will all entries equal to 1.

$$\mathbf{E} = \left[egin{array}{cccc} 1 & & 1 & & 1 \ 1 & & 1 & & 1 \ 1 & & 1 & & 1 \end{array}
ight]$$

Q: Write a matrix equation for your equations from step 1:

3.	Complete	proof of	Thm 9.6,	using th	ne matrix	equation	from step 2	2.