1 Today: More Vocabulary

PART I: Two Types of Convergence

- (a) Convergence in probability
- (b) Convergence almost surely (a.k.a., convergence with probability 1)

PART II: Two Types of Averages

- (a) Time Average
- (b) Ensemble Average

Caveats:

- I'm only covering what we need for this course, not doing comprehensive coverage.
- Emphasis is on intuition.
- HW 2 will have examples.

2 Convergence of a Sequence of Constants: $a_n \to b$

<u>Definition:</u>

 $\{a_n: n=1,2,3,\ldots\}$ converges to b as $n\to\infty$ if \forall ______, s.t. \forall ______,

$$|a_n - b| < \epsilon.$$

PICTURE:

3 Convergence of a Sequence of R.V.s: $Y_n \to \mu$

$$\{Y_n : n = 1, 2, 3, \ldots\}$$
: sequence of r.v.s

Want to say that the sequence converges to a <u>constant</u>.

KEY INSIGHT: A r.v. becomes a constant, once we specify the outcome, ω , of the experiment.

EXAMPLE:

- X = r.v. = sum of 2 rolls of a die
- ω = Outcome of experiment = (2,3)
- $X(\omega) = \underline{\hspace{1cm}} = \text{constant!}$

EXAMPLE:

- $\{Y_n : n = 1, 2, 3, ...\}$ = sequence of r.v.s
- $Y_n = \text{Avg of first } n \text{ tosses of fair coin}$
- ω = Outcome of experiment = 0 0 1 0 1 1 1 0 1 0 . . .
- $\bullet \ \{Y_n(\omega)\} = \underline{\hspace{1cm}}$

4 Convergence Almost Surely: $Y_n \xrightarrow{a.s.} \mu$

 $\{Y_n : n = 1, 2, 3, \ldots\}$: sequence of r.v.s

<u>Definition:</u> $Y_n \xrightarrow{a.s.} \mu$, or equivalently, $Y_n \longrightarrow \mu$ w.p.1, if

$$\mathbf{P}\left\{\lim_{n\to\infty}Y_n=\mu\right\}=1$$

Question: Rewrite definition using sample paths:

- ullet A sample path ω is "good" if: _____

Question: What does almost sure convergence say?

5 Convergence Almost Surely: $Y_n \xrightarrow{a.s.} \mu$

 ${Y_n : n = 1, 2, 3, ...}$: sequence of r.v.s

 Y_n average of first n coinflips of fair coin

$$Y_n \xrightarrow{a.s.} \frac{1}{2}$$
 if $\mathbf{P}\left\{\omega : \lim_{n \to \infty} Y_n(\omega) = \frac{1}{2}\right\} = 1.$

FILL IN PIC:

For almost all sample paths, ω : $Y_n(\omega) \to \frac{1}{2}$, as $n \to \infty$.

Question: Is every sample path ω good?

Question: How many "bad" sample paths are there? Finite? Infinite?

6 Convergence in Probability: $Y_n \xrightarrow{P} \mu$

 $\{Y_n : n = 1, 2, 3, \ldots\}$: sequence of r.v.s

Definition:
$$Y_n \xrightarrow{P} \mu$$
 if $\forall \epsilon > 0$,
$$\lim_{n \to \infty} \mathbf{P} \{ |Y_n - \mu| < \epsilon \} = 1$$

Question: Rewrite definition using sample paths:

Question: What is the sequence that we're taking the limit of?

Question: Suppose we instead want to look at the fraction of sample paths that are behaving badly at each n?

7 Convergence in Probability: $Y_n \stackrel{P}{\longrightarrow} \mu$

 $\{Y_n : n = 1, 2, 3, \ldots\}$: sequence of r.v.s Y_n average of first n coinflips of fair coin

$$Y_n \xrightarrow{P} \frac{1}{2}$$
 if $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbf{P} \left\{ \omega : \left| Y_n(\omega) - \frac{1}{2} \right| < \epsilon \right\} = 1$

FILL IN PIC:

8 Comparison of two types of convergence

a.s. convergence $\stackrel{?}{\Longrightarrow}$ convergence in probability

a.s. convergence $\stackrel{?}{\longleftarrow}$ convergence in probability

9 Laws of Large Numbers

Let X_1, X_2, X_3, \ldots be i.i.d. r.v.s with mean μ .

Let
$$S_n = \sum_{i=1}^n X_i$$
. Let $Y_n = \frac{S_n}{n}$.

WLLN says:
$$Y_n \xrightarrow{P} \mu \text{ as } n \to \infty$$

(Easy proof. See HW 2)

SLLN says:
$$Y_n \xrightarrow{a.s.} \mu \text{ as } n \to \infty$$

(Hard proof. Omitted. But we use this result in our course.)

10 Commercial Break: Announcements

- 1. Pick up last of Probability Assessments.
- 2. Remember to bookmark class website: www.cs.cmu.edu/~harchol/Perfclass/class.html
 - Go to Announcements-and-Homeworks link.
 - HW 1 due at start of class on Friday.
 - HW 2 being posted soon.
 - Look at syllabus too!
- 3. Mor has office hours TODAY: 5:30 p.m. in GHC 7207.
- 4. Please keep up with the reading for this class. Spend 3 hours after every class reading the relevant chapter. Read with pen in hand and cover up answers.
- 5. If you miss class, you can see me to photocopy my notes.
- 6. If you still don't have the textbook for this class, please come see me right after this class!!
- 7. Friday's class will be on z-transforms (see Chpt 25 of your queueing book, or Chpt 6 of the undergrad probability book). If you already know this topic from PnC, you can feel free to skip the class. However you may enjoy the review!

11 PART II: Two Kinds of Averages

Suppose you want to simulate a queue:

$$\lambda = 3$$
 $\mu = 4$

Let N(v) = number jobs at time v.

GOAL: What is $\mathbf{E}[N]$? Two interpretations!

12 Definitions

$$\overline{N}^{\text{Time Avg}} = \lim_{t \to \infty} \frac{\int_0^t N(v) dv}{t}$$

$$\overline{N}^{\text{Ensemble}} = \lim_{t \to \infty} \mathbf{E} \left[N(t) \right]$$

$$\updownarrow$$

$$\overline{N}^{\text{Time Avg}}(\omega) = \lim_{t \to \infty} \frac{\int_0^t N(v, \omega) dv}{t} \qquad \overline{N}^{\text{Ensemble}} = \lim_{t \to \infty} \underbrace{\mathbf{E}\left[N(t, \omega)\right]}_{\text{over all }\omega}$$

13 Ergodic Theorem

(will discuss when get to Chpt 9 of book)

THM: For an ergodic system, the ensemble avg. exists, and

$$\overline{N}^{\text{Time Avg}} = \overline{N}^{\text{Ensemble}}$$
 w.p. 1

Question: What does this theorem say about almost all sample paths, ω ?

Question: There's a key property of "ergodicity" that makes this hold. What do you think this is?

Question: When simulating, which average would you use?