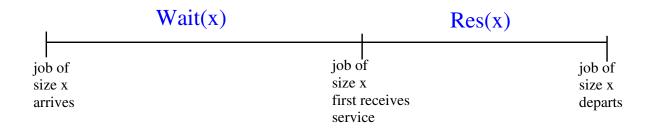
1 Preemptive-Shortest-Job-First (PSJF)

PSJF is the preemptive version of SJF. Priority is based on **original size**.

$$T(x)^{PSJF} = Wait(x)^{PSJF} + Res(x)^{PSJF}$$



<u>Defn</u>: $W_{\leq x}$ = remaining work job x sees comprising only jobs of size $\leq x$.

- Wait(x) represents the time until job x receives its first bit of service.
 - This is a Busy Period started by _____ work,where only _____ are allowed in.
- Res(x) is the time from when job x receives first receives service until it completes.
 - This is a Busy Period started by _____ work,where only _____ are allowed in.

Today's Goal: Derive $\widetilde{T(x)}(s)$

2 Warming up on transforms

Consider an M/G/1 with arrival rate λ and job sizes S.

 A_y is the number of arrivals in time y B is the duration of a busy period B(y) is the duration of a busy period started by work y B_W is the duration of a busy period started by work W

Question: Derive $\widehat{A_y}(z)$

Question: Derive $\widetilde{B(y)}(s)$

Question: Derive $\widetilde{B}(s)$

Question: Derive $\widetilde{B_W}(s)$

 $A_y^{\leq x}$ is the number of arrivals of size $\leq x$ during time y $B_{\leq x}$ is the duration of a busy period of jobs of size $\leq x$ only $B_{\leq x}(y)$: duration of busy period of jobs of size $\leq x$, started by work y $S_{\leq x}$ is the size of a job of size $\leq x$. $\lambda_{\leq x} = \text{arrival rate of jobs of size } \leq x$

Question: Derive $\widehat{A_y^{\leq x}}(z)$

$$\widehat{A_y}(z) = \sum_{i=0}^{\infty} z^i \cdot \mathbf{P} \left\{ A_y = i \right\} = \sum_{i=0}^{\infty} z^i \cdot \frac{e^{-\lambda y} \cdot (\lambda y)^i}{i!}$$

$$= e^{-\lambda y} \sum_{i=0}^{\infty} \frac{(\lambda y z)^i}{i!}$$

$$= e^{-\lambda y} \cdot e^{\lambda y z}$$

$$= e^{-\lambda y(1-z)}$$

Question: Derive $\widetilde{B_{\leq x}(y)}(s)$

$$B(y) = y + \sum_{i=1}^{A_y} B^{(i)}$$

$$\widetilde{B(y)}(s) = e^{-sy} \cdot \widehat{A_y}(\widetilde{B}(s))$$

$$= e^{-sy} \cdot e^{-\lambda y(1-\widetilde{B}(s))}$$

$$= e^{-y(s+\lambda-\lambda\widetilde{B}(s))}$$

Question: Derive $\widetilde{B_{\leq x}}(s)$

$$\widetilde{B}(s) = \int_0^\infty \widetilde{B(y)}(s) \cdot f_S(y) dy$$

$$= \int_0^\infty e^{-y(s+\lambda-\lambda \widetilde{B}(s))} \cdot f_S(y) dy$$

$$= \widetilde{S}(s+\lambda-\lambda \widetilde{B}(s))$$

3 Transform Analysis of PSJF

3.1
$$\widetilde{Res(x)}(s)$$

3.2
$$\widetilde{Wait(x)}(s)$$
 in terms of $\widetilde{W_{\leq x}}(s)$

Recall $W_{\leq x}$ is the work in PSJF system made up of jobs of size $\leq x$.

3.3 Expressing $\widetilde{W_{\leq x}}(s)$

 $W_{\leq x} \ = \ \operatorname{Remaining}$ work in PSJF system due to jobs of size $\leq x$

= Total rem. work in PSJF system assuming____

= Total work in _____ system assuming ____

= ____ in _____ system assuming _____

Hence:

$$\widetilde{W_{\leq x}}(s) =$$

Hint: For an M/G/1/FCFS, with arrival rate λ and job size S:

$$\widetilde{T_Q}(s)^{FCFS} = \frac{(1-\rho)s}{\lambda \widetilde{S}(s) - \lambda + s}$$

3.4 Back to $\widetilde{Wait}(x)(s)$

Question: What is $\widetilde{T(x)}(s)$?

4 Commercial Break: Announcements

- 1. Mor has office hours today: 5:30 p.m. 7 p.m. in GHC 7207. Please come!
- 2. Exam Dec 4th. The time is nominally 5 7 p.m., but we won't kick you out before 8 p.m.
- 3. Please ask me questions!

5 The BEST scheduling policy: SRPT

SRPT is Shortest-Remaining-Processing-Time.

At all moments of time, the server is working on the job with the shortest remaining time.

Question: Explain how SRPT differs from PSJF.

We don't have time to derive SRPT's performance, but we will discuss the result.

Recall:

$$\mathbf{E} \left[T(x) \right]^{PSJF} = \frac{\frac{1}{2} \lambda_{\leq x} \mathbf{E} \left[S_{\leq x}^2 \right]}{(1 - \rho_{\leq x})^2} + \frac{x}{1 - \rho_{\leq x}}$$

or equivalently:

$$\mathbf{E} [T(x)]^{PSJF} = \frac{\frac{\lambda}{2} \int_0^x t^2 f(t) dt}{(1 - \rho_{\leq x})^2} + \frac{x}{1 - \rho_{\leq x}}$$

By contrast:

$$\mathbf{E} \left[T(x) \right]^{SRPT} = \frac{\frac{\lambda}{2} \int_{t=0}^{x} t^2 f(t) dt + \frac{\lambda}{2} x^2 (1 - F(x))}{(1 - \rho_{\leq x})^2} + \int_{t=0}^{x} \frac{dt}{1 - \rho_{\leq t}}$$

Question: Explain the difference in the residence time ...

Recall:

$$\mathbf{E}\left[T(x)\right]^{PSJF} = \frac{\frac{1}{2}\lambda_{\leq x}\mathbf{E}\left[S_{\leq x}^{2}\right]}{(1-\rho_{\leq x})^{2}} + \frac{x}{1-\rho_{\leq x}}$$

or equivalently:

$$\mathbf{E} [T(x)]^{PSJF} = \frac{\frac{\lambda}{2} \int_0^x t^2 f(t) dt}{(1 - \rho_{\le x})^2} + \frac{x}{1 - \rho_{\le x}}$$

By contrast:

$$\mathbf{E} \left[T(x) \right]^{SRPT} = \frac{\frac{\lambda}{2} \int_{t=0}^{x} t^2 f(t) dt + \frac{\lambda}{2} x^2 (1 - F(x))}{(1 - \rho_{\leq x})^2} + \int_{t=0}^{x} \frac{dt}{1 - \rho_{\leq t}}$$

Question: Explain the difference in the waiting time ...

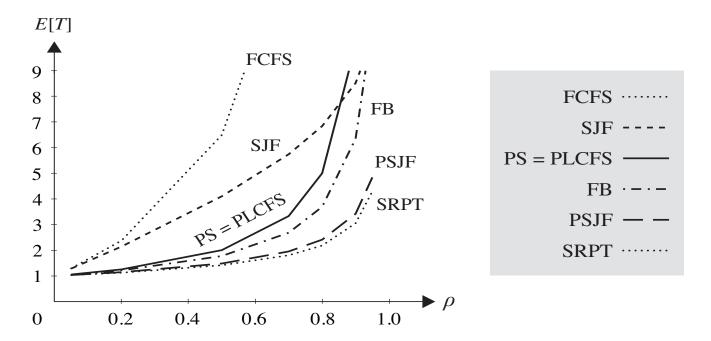


Figure 1: Mean response time as a function of load for the M/G/1 with various scheduling policies. The job size distribution is a Weibull with mean 1 and $C_S^2 = 10$.

If we look at load $\rho = 0.75$, we see:

$$FCFS \gg SJF \gg PS = PLCFS > FB > PSJF > SRPT$$

(Much more extreme for higher C_S^2 .)

Question: Why are the policies ordered this way?

6 If SR	PT is so great, why not always use it?
Question:	Why not use SRPT or PSJF all the time?
Question: size?	Suppose we know job size distribution but not individual job

THANK YOU FOR TAKING THIS CLASS!!

PLEASE stay in touch to talk about your research or industry experiences!