
Single-Server FCFS Queue

I: interarrival time

$$\mathbf{E}[I] = \underline{\hspace{1cm}}$$

 $\lambda = \text{avg arrival rate} = \underline{\hspace{1cm}}$

S = job size = # seconds a job takes on this server when run alone

 $\mathbf{E}\left[S\right] = \underline{\hspace{1cm}}$ on this server

 $\mu = \text{avg service rate} = \underline{\hspace{1cm}}$

 $T = \text{response time} = t_{dept} - t_{arrive}$

 T_Q = queueing time (a.k.a., delay)

Question: How are T and T_Q related?

N = number jobs in system

 N_Q = number jobs in queue

Single-Server FCFS Queue

$$\lambda = 3$$

$$jobs/sec$$

$$0.00$$

$$\mu = 4$$

$$jobs/sec$$

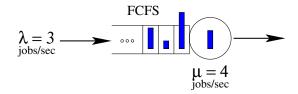
Assume throughout that $\lambda < \mu$:

Question: : As $\lambda \uparrow$, what happens to T? to N?

Question: As $\mu \uparrow$, what happens to T? to N?

Question: Suppose $I \sim \text{Deterministic} \equiv \frac{1}{\lambda}$, and $S \sim \text{Deterministic} \equiv \frac{1}{\mu}$:

- (a) What is T?
- (b) What is T_Q ?


<u>Defn</u>: Load (denoted by ρ) is the fraction of time that the server is busy.

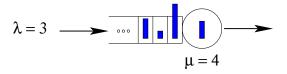
Question: How do you think ρ relates to λ and μ ?

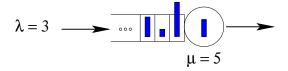
[We will formally derive ρ in Chpt 6]

Question: Is it possible to have $\rho = 0.1$ but T_Q very high?

Single-Server FCFS Queue

Question: So far we've assumed $\lambda < \mu$. What happens to N when $\lambda > \mu$?

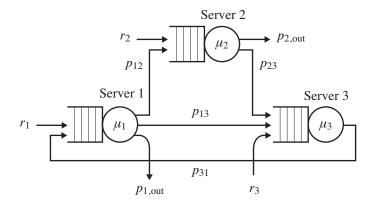

Throughput


Story: Before I was at CMU, I was at MIT. There, I developed a scheduling algorithm for Web servers that dramatically reduced $\mathbf{E}[T]$.

Story Question: Given that my algorithm lowered $\mathbf{E}[T]$, does that imply that throughput went up?

[We will come back to this.]

Question: Which of the following systems has higher throughput?

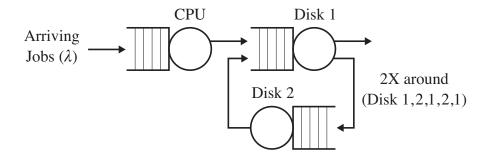


<u>Defn</u>: **Throughput** is the average rate of completions, i.e., jobs/sec that complete. It is traditionally denoted by X, even though it's not a r.v.

Question: What is throughput when $\lambda > \mu$?

Revisit story question \dots

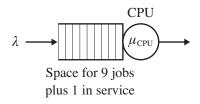
Throughput, examples



Question: What is X?

Question: What is X_i ?

Question: What constrains r_i ?


Throughput, examples

Question: What is X above?

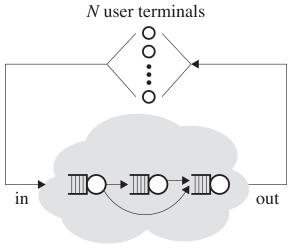
Question: What is X_{disk1} above?

Question: What is X for the finite buffer queue below?

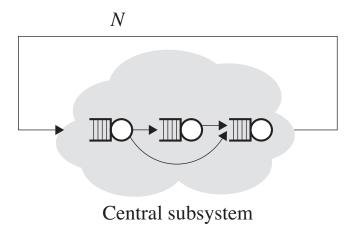
Commercial Break: Announcements

- 1. You must turn in Probability Assessment to stay in the class. The TAs and I will grade this and get back to you.
- 2. Remember to bookmark class website: www.cs.cmu.edu/~harchol/Perfclass/class.html
 - Go to Announcements-and-Homeworks link to get HW 1
 - Check frequently for updates and hints
 - New homework is posted every Friday (often earlier).
 - Homework is due every Friday at the START of class.
 - No late homeworks. Get help early!
 - Zhouzi zhouzil@andrew.cmu.edu GHC 6003 M 3:30 5 p.m.
 - Mor harchol@cs.cmu.edu GHC 7207 W 5:30 7 p.m.
 - Keerthana kgurusha@andrew.cmu.edu GHC 7004 Th 5:30 7 p.m.
- 3. This class meets M, W, F. You can get some advanced notice of what is being covered in each class looking at the syllabus on the Announcements-and-Homework link!
- 4. Please come to Mor's office hours TODAY: 5:30 p.m. in GHC 7207.
- 5. Please keep up with the reading for this class. Spend 3 hours after every class reading the relevant chapter. Book is a sequence of Questions & Answers. Read with a pen in hand. Cover up the answers and think!
- 6. Friday's class will cover generating random variables for simulation. This is Chpt 4 of the book. For those in PnC, you have seen this, but might still want a review. Up to you, but there are a couple simulation problems in HW 1.
- 7. No class Monday Labor Day.

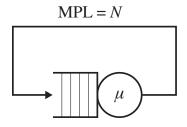
Closed Systems


So far: Open Systems

- $\bullet\,$ exogenous arrival process
- almost all of theory lives here

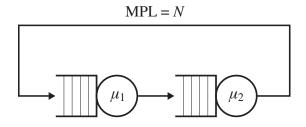

Now: Closed Systems

- arrivals triggered by job completions
- many computer systems live here
- two types of closed systems


Type 1: Interactive Closed System:

Type 2: Batch Closed System:

Comparing Closed vs. Open Systems



Question: What is X?

Question: What is $\mathbf{E}[R]$?

Question: What happens to X and $\mathbf{E}[R]$ if we change μ to 2μ ?

Question: How does this behavior differ from an open system?

Question: What is X?

If time: Some puzzles ...