Motivation

Last Lecture: Real-world job sizes are NOT Exponentially distributed. Inter-arrival times may also not be Exponentially distributed.

Today's Question: How can we represent non-Exponential distributions via Markov chains?

$$C_X^2 = \underline{\hspace{1cm}}$$

Question: Which distribution has $C_X^2 = 0$?

Question: What is C_X^2 for $X \sim \text{Exp}(\mu)$?

Representing Low Variance Distributions

Question: Suppose X has $C_X^2 < 1$ and $\mathbf{E}[X] = \frac{1}{\mu}$.

How can we represent X with Exponentials?

<u>Defn</u>: Erlang-k

 $\underline{\mathrm{Defn}} \colon \mathrm{Generalized\text{-}Erlang\text{-}k}$

The $M/E_2/1$ Queue

Representing High Variance Distributions

Question: Suppose X has $C_X^2 > 1$ and $\mathbf{E}[X] = \frac{1}{\mu}$.

How can we represent X with Exponentials?

Question: Does H_2 have IFR, DFR, CFR? No calculations. Just think!

The $M/H_2/1$ Queue

The Degenerate Hyperexponential

For some intuition for why the Hyperexponential is good at representing high variance distributions ... we turn to the Degenerate version:

Definition: The Degenerate Hyperexponential Distribution, H_2^* : $X \sim H_2^*$ if

$$X \sim \begin{cases} \operatorname{Exp}(p\mu) & \text{w.p. } p \\ 0 & \text{w.p. } 1-p \end{cases}$$

Question: What is $\mathbf{E}[X]$?

Question: What is C_X^2 ?

Question: What is the range of C_X^2 ?

Question: Given any mean $\frac{1}{\mu}$ and $C^2 > 1$, can we always find an H_2^* match?

Can we have both?

<u>Defn</u>: A k-phase Coxian distributions has k Exponential phases organized as follows:

Coxian distributions have properties of both H_2^* and $E_k!$

Theorem [Cox 1950] Coxian distributions are *dense* in the class of nonnegative distributions.

PH = Phase-type

 $\underline{\text{Defn}}$: A k-phase PH distribution has k Exponential phases, with arbitrary transitions between them.

Typical goal: Match > 3 moments of my distribution using PH with few phases.

[There is an entire research area devoted to this. See Taka Osogami papers]

An example of modeling with PH distributions

Analyzing infinite repeating CTMCs with multiple rows

We've now seen many CTMCs that:

- have multiple rows
- have an infinite repeating pattern

Here's one more example:

Question: How can we solve such infinite repeating Markov chains?

The Matrix-Analytic Methods (Very High-Level)

Recall:	How did we solve M/	'M/1?		
With mu	ıltiple-row CTMCs:			
Question Three st	on: Where does R com	e from?		
	to get t	the	Q:	<u>.</u> .
	plify Q using the repea			
• Sub	stitutingds a matrix equation –	_ into the balar	ace equation	rically.
Finally,	use R and	to solve for $\bar{\tau}$	$\vec{\tau}_0$ and thus $\vec{\pi}_i$.	