
The Dark Ages of the 1990's ... Mor's PhD story

Definitions

A job's **size** refers to its total CPU requirement.

A job's age refers to its total CPU usage thus far.

A job's **remaining size** is its remaining CPU requirement.

Question: Which of these jobs likely has higher remaining size?

What we want to understand: $P\{\text{Size} > x + a \mid \text{Size} > a\}$

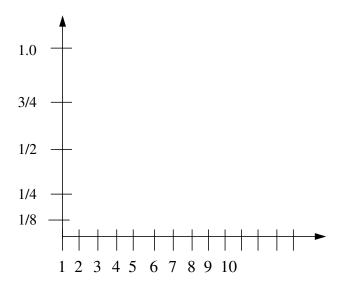
Q: What's the answer if Size $\sim \text{Exp}(\mu)$?

Failure Rate – informally

$$\mathbf{P}\left\{\text{Size} > x + a \mid \text{Size} > a\right\}$$

Q: Examples?

Failure Rate more formally


Definition: For continuous X with p.d.f $f_X(t)$ and tail $\overline{F}_X(t)$, the **failure rate function** $\mathbf{r}_{\mathbf{X}}(\mathbf{t})$ for X is:


$$r_X(t) \equiv \frac{f_X(t)}{\overline{F}_X(t)}$$

- When $r_X(t)$ is strictly decreasing in t, we say: ______.
- When $r_X(t)$ is strictly increasing in t, we say: ______.

Question: What if $r_X(t)$ is constant?

To try to understand the failure rate, Mor measured millions of UNIX jobs \dots

Properties of Power-law Distribution

Suppose that

$$\overline{F}_X(t) = \frac{1}{t}, \qquad t \ge 1$$

1. Is the above a valid distribution?

2. What is $\mathbf{E}[X]$?

3. What is $r_X(t)$, $t \ge 1$? What kind of failure rate is this?

4. Derive $\mathbf{P}\left\{X > 2a \mid X > a\right\}$

The Pareto(α) Distribution

<u>Definition</u>:

Let $0 < \alpha < 2$.

$$X \sim \operatorname{Pareto}(\alpha)$$
 if $\overline{F}(x) = x^{-\alpha}, \quad x \ge 1$

Let $X \sim \text{Pareto}(\alpha)$:

1. If $0 < \alpha \le 1$, classify the moments of X as finite or infinite.

2. If $1 < \alpha < 2$, classify the moments of X as finite or infinite.

Three Properties of Pareto(α) Distribution:

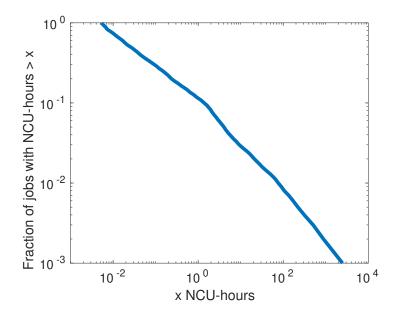
1 DED
1. DFR
2. Infinite Variance
3. "Heavy-tailed property"
Q: What do the above properties tell us about migration?
Measured distribution is BoundedPareto (k, p, α)

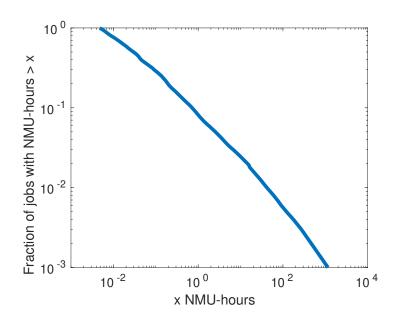
End of the story ...

Today's Distributions -2024

Question: How have workloads changed between 1996 and today?

See: "Borg: the next generation" by Tirmazi et al., EUROSYS, 2020.


COMPUTE CONSUMPTION AT GOOGLE 2020:


- Units: _____
- Distribution: _____
- $C^2 =$ ______
- Span in job sizes: _____
- \bullet Top 1% jobs consume ____ % of total load

MEMORY CONSUMPTION AT GOOGLE 2020:

- Units:_____
- Distribution: _____
- \bullet $C^2 = \underline{\hspace{1cm}}$
- Span in memory consumption: _____
- \bullet Top 1% jobs consume ____ % of total load

Plots from the EUROSYS 2020 paper

Pareto Distributions are Everywhere

• Compute consumption across jobs
• Memory consumption across jobs
• Web file sizes
• Internet node degrees
• IP flow durations
• Wireless session times
• Phone call durations

• Natural disasters

WHY?

• Wealth