1 Review of Burke's Theorem from last time

Theorem:[Burke] Given an M/M/1 with arrival rate λ , in steady state. Let N(t) denote the number of jobs at time t. Then:

- 1. The departure process is ______.
- 2. At each time t, N(t) is independent of ______.

Application to Tandem System

Poisson (
$$\lambda$$
) $\rho_1 = \lambda/\mu_1$ $\rho_2 = \lambda/\mu_2$

Question: What is $\pi_{n_1,n_2} = \mathbf{P} \{ N_1 = n_1 \& N_2 = n_2 \}$?

Question: What is $\mathbf{E}[N_1]$? What is $\mathbf{E}[N_2]$?

2 Jackson Network Definition

A Jackson network is a very general form of queueing network.

- k servers, each with its own (unbounded) queue.
- Jobs at a server are served in FCFS order.
- The *i*th server has service rate $\text{Exp}(\mu_i)$.
- Arrivals from outside the network to server i are Poisson process with rate r_i .
- The routing of jobs is probabilistic: P_{ij} , $P_{i,out}$.

The **response time** of a job is the time from when the job arrives to the network until it leaves, including possibly visiting the same server or different servers multiple times.

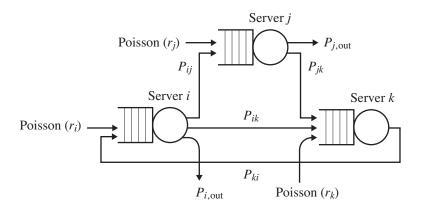


Figure 1: A Jackson network.

Jackson networks are NOT acyclic! Can't use Burke's Thm!

3 Total arrival rate into a server

Question: What is the total arrival rate into server i?

Note that I said "server" not "state."

Question: Now subtract $\lambda_i P_{ii}$ from both sides. What does this mean?

4 Is the arrival process into server i even a Poisson process?

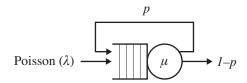


Figure 2: Server i.

Let $\lambda_i = \text{total arrival rate into server } i$.

Question: What is λ_i ?

Question: Is the arrival process into server i a Poisson Proc. w/ rate λ_i ?

5 Balance equations for Jackson network

Question: What is the state of the Jackson network?

Question: What is the rate of leaving state $(n_1, n_2, ..., n_k)$?

Question: What is the rate of entering state $(n_1, n_2, ..., n_k)$?

6 Local Balance Approach

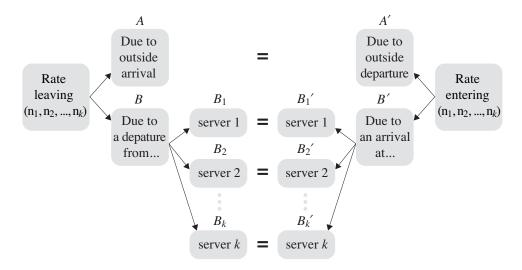


Figure 3: Local balance decomposition approach.

Question: What is A?

Question: What is A'?

Question: What is B_i ?

Question: What is B_i' ?

7 Commerical Break: Announcements

- 1. No class this Friday. Happy Halloween!
- 2. Zhouzi is away today at the INFORMS conference, so he can't hold his office hours. You can still send him email. To help you out, I can hold some extra office hours today from **4:30 p.m. 5:15 p.m.**, so come see me if you're stuck (GHC 7207). Otherwise wait until Wednesday's office hours.
- 3. For these chapters on networks of queues, you'll learn a lot by printing a blank handout and trying to fill it out yourself.

8 Solving A = A'

9 Updating the Guess for $\pi_{(n_1,n_2,...,n_k)}$

10 Solving $B_i = B'_i$

11 What is $\pi_{(n_1,n_2,...,n_k)}$?

12 Example

A web server that receives requests for files according to a Poisson process. Each request requires alternating between the CPU and I/O some Geometrically distributed number of times as the file is segmented into packets and sent to the network.

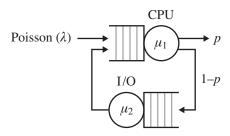


Figure 4: Example of a web server.

Question: What is π_{n_1,n_2} for Figure 4?

Question: What is the average number of jobs in the system, $\mathbf{E}[N]$?