1 Continuous-time Markov Chains

<u>Definition</u>: A **DTMC** is a stochastic process $\{X_n : n = 0, 1, 2, ...\}$ where X_n denotes the state at discrete timestep n s.t., \forall non-negative integers $i, j, i_{n-1}, i_{n-2}, ...$,

$$\mathbf{P}\left\{X_{n+1}=j\mid X_n=i, X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2}, \ldots\right\}$$

|--|

<u>Definition</u>: A **CTMC** is a stochastic process $\{X(t), t \geq 0\}$ where X(t) denotes the state at time t s.t., $\forall s, t \geq 0$ and $\forall i.j, x(u)$,

$$\mathbf{P} \{ X(t+s) = j \mid X(s) = i, X(u) = x(u), 0 \le u \le s \}$$

$$=$$
 _____ (shorthand)

2 Understanding the Definition

Definition: Let τ_i denote the time until the CTMC leaves state i, given that the CTMC is currently in state i.

Question: What can we say about

$$\mathbf{P}\left\{\tau_i > s + t \mid \tau_i > s\right\}$$

3 Two EQUIVALENT VIEWS of CTMC

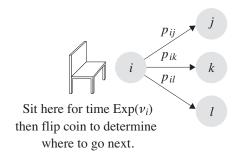


Figure 1: VIEW 1 of a CTMC.

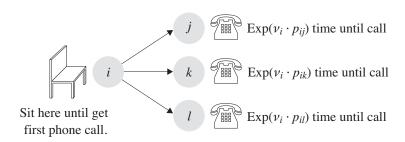


Figure 2: VIEW 2 of a CTMC.

4 Modeling a single-server queue

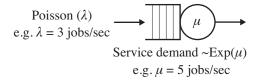


Figure 3: A queue.

Using VIEW 2, draw the CTMC model of this queue. Think only about events that cause a change of state.

OBSERVATIONS:

- λ and μ _____ probabilities.
- An "event" _____ the state.
- Time to next arrival \sim _____
- ullet Time to next departure \sim _____
- Time to leave state $1 \sim$
- P {When leave 1 next go to 2} = _____

5 Limiting Probabilities for CTMCs

<u>Definition</u>: Let $\pi_j = \lim_{t\to\infty} P_{ij}(t) = \text{limiting probability of being in state}$ j.

Question: How can we determine the π_j 's?

Helping Question: If we had a DTMC, how would we determine π_j 's?

Question: Can we model the CTMC via an equivalent DTMC?

• Think of time as discretized into δ -time steps. Draw DTMC, where flip coin every δ time step.

• Redraw DTMC using $o(\delta)$ notation.

6 Solving the Equivalent DTMC

• To solve DTMC, let's write "Balance Equations," which are equivalent to Stationary Eqns, but let us ignore self-loops

• Now divide all equations by δ and take the limit as $\delta \to 0$.

GENERAL MESSAGE: To solve CTMC, we pretend it's a _____ and then solve the ______.

7 Converting general CTMCs to equivalent DTMCs

8 Summary Theorem for CTMCs

This follows directly from the "Summary Theorem" for DTMCs:

<u>Theorem</u>: [Summary Thm for CTMCs]

Given an irreducible CTMC.

Let q_{ij} denote the rate of transitions from state i to state j, given that the MC is in state i.

Let $\nu_i = \sum_j q_{ij}$. Suppose $\exists \pi_i$'s s.t. $\forall j$,

$$\pi_i \nu_i = \sum_j \pi_j q_{ji}$$
 and $\sum_i \pi_i = 1$

Then the π_i 's are the limiting probabilities for the CTMC, and the CTMC is ergodic.

Define these terms:

- \bullet π_i
- \bullet q_{ij}
- $\pi_i q_{ij}$
- $\bullet \ \nu_i$
- $\pi_i \nu_i$

9 M/M/1

Poisson (
$$\lambda$$
)
e.g. $\lambda = 3$ jobs/sec
Service demand ~Exp(μ)
e.g. $\mu = 5$ jobs/sec

Figure 4: M/M/1 queue

Question: Why is this called an M/M/1?

Let N denote the number of jobs. Derive $\mathbf{E}[N]$ via these steps:

1. Draw the CTMC for the M/M/1

2. Write the balance equations for the CTMC.

3. Let $\rho = \frac{\lambda}{\mu}$. Make a guess for π_i in terms of ρ and π_0 . Check your guess.

4. Solve for π_0 . What does ρ represent?

5. Determine $\mathbf{E}[N]$.

6. Graph $\mathbf{E}[N]$ as a function of ρ .

PRACTICE PROBLEM:

Computer viruses appear according to a Poisson Process with avg rate λ viruses per hour.

Every hour we run a virus cleaner which removes all the viruses.

The damage done by a virus is directly proportional to the time that the virus is in the system (time from arrival until it's cleaned up).

Let D be a r.v. representing the total damage done by viruses in the first hour.

- (a) What is $\mathbf{E}[D]$?
- (b) What is $\widetilde{D}(s)$?