1. Let \(A \) be an \(m \times n \) matrix.
 Let \(B \) be an \(n \times p \) matrix.
 Let \(C = A \cdot B \)
 Let \(c_{ij} \) be the \((i, j)\)th element of \(C \), and likewise for \(a_{ij} \) and \(b_{ij} \).
 Express \(c_{ij} \) as a sum of products.

2. Baskin Robins has \(n \) flavors of ice cream. You are building a cone with \(k < n \) scoops. How many different cones can you make if each flavor can only be used once, and the ordering of the flavors matters?

3. Baskin Robins has \(n \) flavors of ice cream. You are building a cone with \(k < n \) scoops. How many different cones can you make if each flavor can only be used once, and the ordering of the flavors does not matter?

4. Simplify the following sums:

 (a) \(\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} \)

 (b) \(\binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n \)

 (c) \(\binom{n}{0}y^n + \binom{n}{1}xy^{n-1} + \binom{n}{2}x^2y^{n-2} + \cdots + \binom{n}{n}x^n \)