1. What is this called: \(\lim_{n \to \infty} (1 + \frac{1}{n})^n \)?

2. What is this: \(\lim_{n \to \infty} (1 + \frac{x}{n})^n \)? (assume \(x \) is a constant)

3. Let \(0 < x < 1 \).

 (a) What is bigger, \(1 + x \) or \(e^x \)?

 (b) What is bigger, \(1 - x \) or \(e^{-x} \)?

 [Hint: Think about the Taylor Series Expansion around 0.]

4. What is a good approximation for:

 (a) \(S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} \) (give both an upper and lower bound)

 (b) \(S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \)