Exploiting Process Lifetime Distributions for Dynamic Load Balancing

Mor Harchol-Balter™

Allen B. Downey!

University of California at Berkeley
{harchol , downey } @cs.berkeley.edu

Abstract

We measure the distribution of lifetimes for UNIX processes
and propose a functional form that fits this distribution well.
We use this functional form to derive a policy for preemptive
migration, and then use a trace-driven simulator to compare
our proposed policy with other preemptive migration poli-
cies, and with a non-preemptive load balancing strategy. We
find that, contrary to previous reports, the performance ben-
efits of preemptive migration are significantly greater than
those of non-preemptive migration, even when the memory-
transfer cost i1s high. Using a model of migration costs rep-
resentative of current systems, we find that preemptive mi-
gration reduces the mean delay (queueing and migration) by
35 — 50%, compared to non-preemptive migration.

1 Introduction

Most systems that perform load balancing use remote ex-
ecution (i.e. non-preemptive migration) based on a priori
knowledge of process behavior, often in the form of a list of
process names eligible for migration. Although some systems
are capable of migrating active processes, most do so only
for reasons other than load balancing (such as preserving
autonomy). A previous analytic study ([ELZ88]) discour-
ages implementing preemptive migration for load balancing,
showing that the additional performance benefit of preemp-
tive migration is small compared with the benefit of simple
non-preemptive migration schemes. But simulation stud-
ies (which can use more realistic workload descriptions) and
implemented systems have shown greater benefits for pre-
emptive migration ([KL88] and [BSW93]). This paper uses a
measured distribution of process lifetimes and a trace-driven
simulation to investigate these conflicting results.

1.1 Load balancing taxonomy

On a network of shared processors, load balancing is the
idea of migrating processes across the network from hosts
with high loads to hosts with lower loads. The motivation
for load balancing is to reduce the average completion time

*Supported by National Physical Science Consortium (NPSC) Fel-
lowship. Also supported by NSF grant number CCR-9201092.
TPartially supported by NSF (DARA) grant DMW-8919074.

of processes and improve the utilization of the processors.
Analytic models and simulation studies have demonstrated
the performance benefits of load balancing, and these results
have been confirmed in existing distributed systems (see Sec-
tion 1.4).

An important part of the load balancing strategy is the
migration policy, which determines when migrations occur
and which processes are migrated. This is the question we
address in this paper.’

Process migration for purposes of load balancing comes
in two forms: remote execution (also called non-preemptive
migration), in which some new processes are (possibly auto-
matically) executed on remote hosts, and preemptive migra-
tion, in which running processes may be suspended, moved
to a remote host, and restarted. In non-preemptive migra-
tion only newborn processes are migrated.

Load balancing may be done explicitly (by the user) or
implicitly (by the system). Implicit migration policies may
or may not use a prior: information about the function of
processes, how long they will run, etc.

Since the cost of remote execution is usually significant
relative to the average lifetime of processes, implicit non-
preemptive policies require some a priori information about
job lifetimes. This information is often implemented as an
eligibility list (e.g. [Sve90]) that specifies (by process name)
which processes may be migrated.

In contrast, most preemptive migration policies do not use
a priori information, since this it is often difficult to main-
tain and preemptive strategies can perform well without it.
These systems use only system-visible data like the current
age of each process or its memory size.

This paper examines the performance benefits of pre-
emptive, implicit load balancing strategies that assume
no a priori information about processes.

1.2 Process Model

In our model, processes use two resources: CPU and mem-
ory (we do not consider I/O). Thus, we use “age” to mean
CPU age (the CPU time a process has used thus far) and
“lifetime” to mean CPU lifetime (the total CPU time from
start to completion). Since processes may be delayed while
on the run queue or while migrating, the slowdown imposed
on a process is

I The other half of a load balancing strategy is the location policy
— the selection a new host for the migrated process. Previous work
([Zho87] and [Kun91]), has suggested that choosing the target host
with the shortest CPU run queue is both simple and effective. Our
work confirms the relative unimportance of location policy.

wall time (p)
CPU time (p)

Slowdown of process p =
where wall-time(p) is the total time p spends running, wait-
ing in queue, or migrating.

1.3 Outline

The effectiveness of load balancing — either by remote exe-
cution or preemptive migration — depends strongly on the
nature of the workload, including the distribution of process
lifetimes and the arrival process. This paper presents empir-
ical observations about the workload on a network of UNIX
workstations, and uses a trace-driven simulation to evalu-
ate the impact of this workload on proposed load balancing
strategies.

Section 2 presents a study of the distribution of process
lifetimes for a variety of workloads in an academic environ-
ment, including instructional machines, research machines,
and machines used for system administration. We find that
the distribution is predictable (with goodness of fit > 99%)
and consistent across a variety of machines and workloads.
As a rule of thumb, the probability that a process with CPU
age of one second uses more than 7' seconds of total CPU
time is 1/T (see Figure 1).

Our measurements are consistent with the results of
[LLO&E], but this prior work has been incorporated in few
subsequent analytic and simulator load balancing studies.
This omission is unfortunate, since the results of these load
balancing studies are quite sensitive to the lifetime model.

Our observations of lifetime distributions have the follow-
ing consequences for load balancing:

o They suggest that it is preferable to migrate older pro-
cesses because these processes have a higher probability
of living long enough (eventually using enough CPU) to
amortize their migration cost.

e A functional model of the distribution provides an an-
alytic tool for deriving the eligibility of a process for
migration as a function of its current age, migration
cost, and the loads at its source and target host (the
eligibility criterion doesn’t rely on free parameters that
must be hand-optimized). This tool is generally useful
for analysis of system behavior.

Specifically, Section 3 shows the derivation a migration eli-
gibility criterion that guaranteesthat the slowdown imposed
on a migrant process is lower (in expectation) than it would
be without migration. According to this criterion, a process
is eligible for migration only if its

CPU age >

- migration cost

n—m
where n (respectively m) is the number of processes at the
source (target) host.

In Section 5 we use a trace-driven simulation to compare
our preemptive migration policy (from Section 3) with a non-
preemptive policy based on name-lists. The simulator (see
Section 5.1) uses start times and durations from traces of
a real system, and migration costs chosen from a measured
distribution.

We use the simulator to run three experiments: first (Sec-
tion 5.2) we evaluate the effect of migration cost on the rel-
ative performance of the two strategies. Not surprisingly,
we find that as the cost of preemptive migration increases,
it becomes less effective. Nevertheless, preemptive migra-
tion performs better than non-preemptive migration even
with surprisingly large migration costs (despite several con-
servative assumptions that give non-preemptive migration
an unfair advantage).

Next (Section 5.3) we choose a specific model of preemp-
tive and non-preemptive migration costs (described in Sec-
tion 4), and use this model to compare the two migration
strategies in more detail. We find that preemptive migra-
tion reduces the mean delay (queueing and migration) by 35
- 50%, compared to non-preemptive migration. We also pro-
pose several alternative metrics intended to measure users’
perception of system performance. By these metrics, the
additional benefits of preemptive migration (compared to
non-preemptive migration) appear even more significant.

Finally, in Section 5.4 we use the simulator to compare
our preemptive migration strategy with other preemptive
schemes in the literature.

We finish with a self-criticism of our model in Section 6
and conclusions in Section 7.

1.4 Related Work
1.4.1 Systems

Most existing systems provide some form of user-controlled
remote execution, but relatively few provide automated load
balancing. Of the ones that do, the majority are based on
implicit remote execution of newborn processes; few use pre-
emptive migration.

(The following taxonomy is based in large part on
[Nut94].)

The following systems have implemented explicit remote
execution and/or explicit preemptive migration; that is,
both forms of migration are only performed at the user’s
request: Accent [Zay87], Locus [Thi91], Utopia [ZWZD93],
DEMOS/MP [PM83], V [TLCS85], NEST [AES7], and MIST
[CCKT95].

Some other systems provide implicitremote execution, but
perform preemptive migration only at the request of a user or
for reasons other than load balancing (such as preserving au-
tonomy): Amoeba [TvRaHvSS90], Charlotte [AF89], Sprite
[DO91], Condor [LLM88], and Mach [Mil93]. Although these
systems are capable of migrating active processes (with vary-
ing degrees of transparency), none have implemented a pol-
icy that specifies which processes should be preempted for
purposes of load balancing.

Only a few systems have implemented automated load bal-
ancing policies with preemptive migration: MOSIX[BSW93]
and RHODOS [GGIT91]. The MOSIX load balancing
scheme is similar to the strategies recommended in this pa-
per; our results support their claim that their scheme is ef-
fective and robust.

In general, non-preemptive load balancing strategies de-
pend on a priort information about processes; e.g., ex-
plicit knowledge about the runtimes of processes or user-
provided lists of migratable processes ([AE87], [LL90],
[DO91], [ZWZD93]).

Distribution of process lifetimes

(fraction of processes with duration > T)
1.0

0.8

0.6

0.4

0.2

0.0

1 2 4 8 16 32 64
Duration (T secs.)

Distribution of process lifetimes (log plot)
(fraction of processes with duration > T)

1/2
1/4
1/8

1/16

\
1/32 \\

1/64

.

1 2 4 8 16 32 64
Duration (T secs.)

Figure 1: Distribution of process lifetimes for processes with lifetimes greater than 1 second, observed on machine “po” mid-
semester. The dotted (thicker) line shows the measured distribution; the solid (thinner) line shows the least squares curve
fit. To the right: the same distribution shown on a log-log scale. The straight line in log-log space indicates that the process

lifetime distribution can be modeled by T*, where k is the slope of the line.

1.4.2 Studies

Although few systems use preemptive migration for load bal-
ancing, there have been many simulation studies and an-
alytic models showing the performance benefits of various
load balancing strategies. Some of these studies have focused
on load balancing by remote execution ([LM8&2], [WMS85],
[CK87], [Zho87], [PTS88], [Kun91], [HI90], [ELZ86]); others
have compared the performance of systems with and without
preemptive migration ([ELZ88], [KLS8S8]).

Our work differs from [ELZ88] in both system model and
workload description. [ELZ88] model a server farm in which
incoming jobs have no affinity for a particular processor, and
thus the cost of initial placement (remote execution) is free.
This is different from our model, a network of workstations,
in which incoming jobs arrive at a particular host and the
cost of moving them away, even by remote execution, is sig-
nificant.

Also, [ELZ88] use a degenerate hyperexponential distribu-
tion of lifetimes that includes many jobs with zero lifetime,
and far fewer short jobs (0 — 1 seconds) than we observed.
For a more detailed explanation of this distribution and its
effect on the study, see [DHB95].

[K1.88] use a hyperexponential lifetime distribution that
approximates closely the distribution we observed; as a re-
sult, their findings are largely in accord with ours. One
difference between their work and ours is that they used a
synthetic workload with Poisson arrivals. The workload we
observed, and used in our trace-driven simulations, exhibits
serial correlation; i.e. it is more bursty than a Poisson pro-
cess. Also, our migration policy differs from [KL88] in that
our proposed migration policy uses preemptive migration ex-
clusively, rather than in addition to, remote execution.

Like us, [BF81] discuss the distribution of process lifetimes
and its effect on preemptive migration policy, but their hypo-
thetical distributions are not based on system measurements.
Also like us, they choose migrant processes on the basis of

expected slowdown on the source and target hosts, but their
estimation of those slowdowns is very different from ours.
In particular, they use the distribution of process lifetimes
to predict a host’s future load as a function of its current
load and the ages of the processes running there. We have
examined this issue in detail and found (1) that this model
fails to predict future loads because it ignores future arrivals,
and (2) that current load is the best predictor of future load.
Thus, in our estimates of slowdown, we will assume that the
future load on a host is equal to the current load.

2 Distribution of lifetimes

The general shape of the distribution of process lifetimes in
an academic environment has been known for a long time
[Ros65]: there are many short jobs and a few long jobs, and
the variance of the distribution is greater than that of an
exponential distribution.

In 1986 [LLO&6] proposed a functional form for the pro-
cess lifetime distribution, based on measurements of the
lifetimes of 9.5 million UNIX processes between 1984 and
1985. Leland and Ott concluded that process lifetimes have
a UBNE (used-better-than-new-in-expectation) type of dis-
tribution. That is, the greater the current CPU age of a
process, the greater its expected remaining CPU lifetime.?
Specifically, they found that for 7' > 3 seconds, the probabil-
ity of a process’ lifetime exceeding T seconds is rT*, where
—1.25 < k < —1.05 (r normalizes the distribution).

In contrast to [LO86], Rommel ([Rom91]) claimed that his
measurements show that “long processes have exponential
service times.”

Because of the importance of the process lifetime distribu-
tion to load balancing policies, we performed an independent
study of this distribution, which we describe in Section 2.1.

’In contrast, the exponential distribution is memoryless; the ex-
pected remaining lifetime of a process is independent of age.

Name Total Num. Estim. Std. R?
of Number Procs. | Lifetime | Error val
Host Procs. with | Distrib.

Studied | Age> 1 Curve

pol 77440 4107 | T7°°7 .016 | 0.997
po2 154368 11468 | 77122 .012 | 0.999
po3 111997 7524 | T3 .021 | 0.997
cory 182523 14253 | T—°%8 .030 | 0.982
pors 141950 10402 | T—9%4 .015 | 0.997
bugs 83600 4940 | T70%2 .007 | 0.999
faith 76507 3328 | T7°78 .045 | 0.964

Table 1: The estimated lifetime distribution curve for each
machine measured, and the associated goodness of fit statis-
tics. Description of machines: Po is a heavily-used DEC-
server5000/240, used primarily for undergraduate course-
work. Pol, po2, and po3 refer to measurements made on
po mid-semester, late-semester, and end-semester. Cory is
a heavily-used machine, used for coursework and research.
Porsche is a less frequently-used machine, used primarily for
research on scientific computing. Bugs is a heavily-used ma-
chine, used primarily for multimedia research. Faith is an
infrequently-used machine, used both for video applications
and system administration.

In our study the functional form proposed by [LOS86] fits
all our observed distributions well, for processes with life-
times greater than 1 second. For the longest jobs (> 1000
seconds), there are so few processes in our sample that the
fit deteriorates, but overall the goodness of fit of the model
is excellent.® This functional form is consistent across a vari-
ety of machines and workloads, and although the parameter,
k, varies from -1.3 to -.8, it is generally near —1.0. Thus, as
a rule of thumb,

1. The probability that a process with age 1 second uses
at least T seconds of total CPU time is about 1/T.

2. The probability that a process with age 7' seconds uses
at least an additional 7" seconds of CPU time is about
1/2. Thus, the median remaining lifetime of a process
is equal to its current age.

Despite the [LLO86] study, many researchers have contin-
ued to assume an exponential process lifetime distribution in
their analysis of migration strategies (e.g., [MTS90], [BK90]
[EB93], [LR93]). The reasons for assuming an exponen-
tial lifetime distribution include: (1) analytic tractability,
and (2) the belief that the exponential distribution is close
enough to real distributions that the results of the analyses
are not affected.

In this paper, we make the following claims about lifetime
distributions:

3Throughout this paper, we distinguish between observed lifetime
distributions (taken from our measurements) and the proposed func-
tional form (which fits the observed distribution over all but the
longest processes). Although the functional form has infinite mean
and variance, the observed distributions (necessarily) have finite mean
and variance.

e The performance of various migration strategies (and
other system features) depends strongly on the details
of the workload description. For example, two distribu-
tions that match with respect to both mean and vari-
ance might still produce significantly different results.

e The properties of an exponential distribution are very
different from those of the distributions we observed.
For example, the distributions we observed all have a
tail of long-lived jobs (i.e., the distributions have high
variance). An exponential distribution with the same
mean would have lower variance; it lacks the tail of long-
lived jobs.

o Although the alternate functional form that we (and
[LO86]) propose cannot be used in queueing models
as easily as an exponential distribution, it nevertheless
lends itself to some forms of analysis, as we show in
Section 3.2.

In previous work, some simulations and analyses have
used a hyperexponential distribution of lifetimes (a hyper-
exponential distribution consists of two or more exponential
branches). The motivation for this model is that by us-
ing more than one exponential distribution, it is possible to
match an observed distribution more closely. In cases where
the hyperexponential distribution has enough branches to fit
the observed distribution well, as in [KI.88], this model has
been successful.

The remainder of this section focuses on our distribution
measurements. We observed that long processes (with life-
times greater than 1 second) have a predictable and con-
sistent distribution. Section 2.1 describes this distribu-
tion. Section 2.2 makes some additional observations about
shorter processes.

2.1 Lifetime distribution when lifetime > 1s.

To determine the probability distribution function for UNIX
processes, we measured the lifetimes of over one million pro-
cesses, generated from a variety of academic workloads, in-
cluding instructional machines, research machines, and ma-
chines used for system administration. We obtained our data
using the UNIX command lastcomm, which outputs the CPU
time used by each completed process.

Figure 1 shows our process lifetime measurements on a
heavily-used instructional machine in mid-semester. The
plot shows only processes whose lifetimes exceed one second.
The dotted (heavy) line indicates the measured distribution;
the solid (thinner) line indicates the least squares curve fit.
The straight line in log-log space indicates that the process
lifetime distribution fits the curve T*, where k is the slope
of the line.

For all the machines we studied, the process lifetime data
(for processes with age greater than one second) fit a curve
of the form T*, where k ranged from about —1.3 to —.8 for
different machines. Table 1 shows the estimated lifetime dis-
tribution curve for each machine we studied. The parameters
were estimated by an iteratively weighted least squares fit
(with no intercept, in accordance with the functional model).
The standard error associated with each estimated parame-
ter gives a confidence interval for that parameter (all of these
parameters are statistically significant at a high degree of
certainty). Finally, the R? value indicates the goodness of

Observed distribution and two curve fits
(fraction of processes with duration > T)

1
12

T*it

one parameter
1/4 (one p)

1/8 exponential fit
(two parameters)
1/16

1/32

1/64

1 2 4 8 16 32
Duration (T secs.)

Figure 2: In log-log space, this plot shows the distribution
of lifetimes for the ~ 13000 processes with lifetimes > 1 sec-
ond from our trace-driven simulation (see Section 5), and
two attempts to fit a curve to this data. One of the fits is
based on the model proposed in this paper, 7%. The other
fit is an exponential curve, ¢-e~*T. Although the exponen-
tial curve is given the benefit of an extra free parameter, it
fails to model the observed data. The proposed model fits
well. Both fits were performed by iteratively-weighted least
squares.

fit of the model — the values shown here indicate that the
fitted curve accounts for greater than 99% of the variation
of the observed values. Thus, the goodness of fit of these
models is very high.

Although the range of parameters we observed is fairly
broad, in the absence of measurements from a specific sys-
tem, assuming a distribution of 1/7 is substantially more
accurate than assuming that process lifetimes are exponen-
tially distributed, as shown by Figure 2.

Table 2 shows the lifetime distribution function, the cor-
responding density function, and the conditional distribu-
tion function. We will refer to the conditional lifetime dis-
tribution often during our analysis of migration strategies.
The second column of Table 2 shows these functions when
k = —1, which we will assume for our analysis in Section 3.

2.2 Process lifetime distribution in general

For completeness we discuss the lifetime distribution for
processes with lifetimes less than one second. Since our
measurements were made using the lastcomm command the
shortest process we were able to measure was .01 seconds.
For processes between .01 and 1 second, we did not find
a consistent functional form, however for all machines we
studied these processes had an even lower hazard rate than
those of age > 1 second. That is, while the probability that
a process of age T' > 1 second lives another 1" seconds is ap-
proximately 1/2, the probability that a process of age T' < 1
second lives another 7' seconds is something greater than
1/2.

Process Lifetime Distribution for When

Processes of Age > 1 second k=-1

Pr {Proc. lifetime > T sec | age > 1sec} =T* | =1/T

Pr {Lifetime = T sec | age = 1 sec} = —kT*™" || =1/T7
Pr {Lifetime > a sec | age =b > 1 sec} = (%)k =2

Table 2: The cumulative distribution function, probability
density function, and conditional distribution function of
processes lifetimes. The second column shows the functional
form of each for the typical value k = —1.0.

3 Migration Policy

A migration policy is based on two decisions: when to mi-
grate processes and which processes to migrate. The focus
of this paper is the second question (we will touch on the
first question in Section 5.1):

Given that the load at a host is too high, how do
we choose which process to migrate?

Our heuristic is to choose the process that has highest prob-
ability of running longer than its migration time.

The motivation for this heuristic is twofold. From the
host’s perspective, a large fraction of the migration time is
spent at the host (packaging the process). The host would
only choose to migrate processes that are likely to be more
expensive to run than to migrate. From the process’ perspec-
tive, migration time has a large impact on response time. A
process would choose to migrate only if the migration over-
head could be amortized over a longer lifetime.

Most existing migration policies only migrate newborn
processes (no preemption), because these processes have no
allocated memory and thus their migration cost is less (see
Section 4).4 The problem with this policy is that, according
to the process lifetime distribution (Section 2), these new-
born processes are unlikely to live long enough to justify the
cost of remote execution.

Thus a “newborn” migration policy is only justified if the
system has prior knowledge about the processes and can
selectively migrate only those processes likely to be CPU
hogs. However, the ability of the system to predict process
lifetimes by name is limited, as shown in Section 5.3.1.

Can we do better? The lifetime distribution points us
towards migrating older processes, since they have the high-
est probability of living long enough to justify the cost of
migration, but there are two potential problems with this
strategy: (1) since the vast majority of processes are short,
there might not be enough long-lived processes to have a
significant load balancing effect, and (2) the additional cost
of migrating old processes (the memory transfer cost) might
overwhelm the benefit of migrating longer-lived processes.

The following sections address these concerns. Section 3.2
also proposes a new preemptive migration strategy based on
the lifetime distribution.

4The idea of migrating newborn processes might also stem from
the fallacy that process lifetimes have an exponential distribution,
implying that all processes have equal expected remaining lifetimes
regardless of their age.

3.1 Moving Enough Work

If only old processes are eligible for migration, and the ma-
jority of processes are short-lived, there might not be enough
old processes to produce a significant load balancing effect.

In fact, although there are few old processes, they account
for a large part of the total CPU load. According to our
process lifetime measurements (Section 2), typically fewer
than 3.5% of processes live longer than 2 seconds, yet these
processes make up more than 60% of the total CPU load.
This is due to the long tail of the process lifetime distribution
(see Figure 2). [LO86] make a similar observation.

Furthermore, we will see that the ability to migrate even a
few large jobs can have a large effect on system performance,
since a single large job on a busy host imposes slowdowns
on many small processes.

3.2 Our Migration Policy

The obvious disadvantage of preemptive migration is the
need to transfer the memory associated with the migrant
process; thus, the migration cost for an active process is
much greater than the cost of remote execution. If preemp-
tive migration is done carelessly, this additional cost might
overwhelm the benefit of migrating processes with longer
expected lives.

For this reason, we propose a strategy that guarantees
that every migration improves the expected performance of
the migrant process and the other processes at the source
host.®

Whenever more than one process is running on a host and
one process migrates away, the expected slowdown of the
others decreases, regardless of the duration of the processes
or the cost of migration. But the slowdown of the migrant
process might increase, if the time spent migrating is greater
than the time saved by running on a less-loaded host. Thus
we will perform migration only if it improves the expected
slowdown of the migrant process.

If there is no process on the host that satisfies this crite-
rion, no migration is done. If migration costs are high, few
processes will be eligible for migration; in the extreme there
will be no migration at all. But in no case is the performance
of the system worse (in expectation) than the performance
without migration.

Using the distribution of process lifetimes, we now show
how to calculate the expected slowdown imposed on a mi-
grant process, and use this result to derive a minimum age
for migration based on the cost of migration. Denoting the
age of the migrant process by a; the cost of migration by ¢;
the (eventual total) lifetime of the migrant by L, the num-
ber of processes at the source host by n; and the number of
processes at the target host (including the migrant) by m,
we have:

Sor course, processes on the target host are slowed by an arriving
migrant, but on a moderately-loaded system there are almost always
idle hosts; thus the number of processes at the target host is usually
zero. In any case, the number of processes at the target is always less
than the number at the source.

E {slowdown of migrant }

Pr L%fetlme. of [E SloydeWH given |
. migrant is t lifetime 1s t

=a

/ Pr{t<L<ttdil>a} tetetmlt=a
t

t

=a

ooi na—l—c—l—m(t—a)dt
t:at2 t

(g man)
9 a m n

If there are n processes at a heavily loaded host, then a
process should be eligible for migration only if its expected
slowdown after migration is less than n (which is the slow-
down it expects in the absence of migration).

Thus, we require %(% + m + n) < n, which implies

.. . . Migration cost
Minimum migration age =

n—m

This analysis extends easily to the case of heterogeneous
processor speeds by applying a scale factor to n or m.

This analysis assumes that current load predicts future
load; that is, that the load at the source and target hosts will
be constant during the migration. In an attempt to evaluate
this assumption, and possibly improve it, we considered a
number of alternative load predictors, including (1) taking
a load average (over an interval of time), (2) summing the
ages of the running processes at the target host, and a (3)
calculating a prediction of survivors and future arrivals based
on the distribution model proposed here. We found that
current (instantaneous) load is the best single predictor, and
that using several predictive variables in combination did not
greatly improve the accuracy of prediction. These results are
in accord with Zhou’s thesis, [Zho87] and with [Kun91].

The MOSIX migration policy [BSW93] is based on a re-
striction that is similar to the criterion we are proposing: the
age of the process must exceed the migration cost. Thus, the
slowdown imposed on the migrant process (due to migration)
must be less than 2.0. This bound is based on the worst case,
in which the migrant process completes immediately upon
arrival at the target.

The MOSIX requirement is likely to be too restrictive,
for two reasons. First, it ignores the slowdown that would
be imposed at the source host in the absence of migration
(presumably there is more than one process there, or the
system would not be attempting to migrate processes away).
Secondly, it is based on the worst-case slowdown rather than
(as shown above) the expected slowdown. We will explicitly
compare the MOSIX policy with ours in Section 5.4.

4 Model of migration costs

Since migration cost has such a large effect on the perfor-
mance of preemptive load balancing, this section presents
the model of migration costs we will use in our simulation
studies.

We model the cost of migrating an active process as the
sum of a fized migration cost for migrating the process’ sys-
tem state plus a memory transfer cost that is proportional
to the amount of the process’ memory that must be trans-
ferred. We model remote execution cost as a fixed cost; it is
the same for all processes.

Throughout this paper, we refer to the following parame-
ters:

e r: the cost of remote execution, in seconds

o f: the fixed cost of preemptive migration, in seconds

e b: the memory transfer bandwidth, in MB’s per second
e m: the memory size of migrant processes, in MB

and thus:

cost of remote execution = r

cost of preemptive migration = f+m/b

We refer to the quotient m /b as the memory transfer cost.

4.1 Memory transfer costs

The amount of a process’” memory that must be transferred
during preemptive migration depends on properties of the
distributed system. [DO91] have an excellent discussion of
this issue, and we borrow from them here.

At the most, it might be necessary to transfer a process’
entire memory. On a system like Sprite, which integrates
virtual memory with a distributed file system, it is only nec-
essary to write dirty pages to the file system before migra-
tion. When the process is restarted at the target host, it
will retrieve these pages. In this case the cost of migration
is proportional to the size of the resident set rather than the
size of memory.

In systems that use precopying (such as the V [TLCS85]
system), pages are transferred while the program continues
to run at the source host. When the job stops execution at
the source, it will have to transfer again any pages that have
become dirty during the precopy. Although the number of
pages transferred might be increased, the delay imposed on
the migrant process is greatly decreased.

Additional techniques can reduce the cost of transferring
memory even more ([Zay87]).

4.2 Migration costs in real systems

The specific parameters of migration cost depend not only
on the nature of the system (as discussed above) but also
on the speed of the network. In this section, we will present
reported values for parameters on a variety of real systems.
Later we will use a trace-driven simulator to evaluate the
effect of these parameters on system performance.

The cost of remote execution, r, on a typical UNIX work-
station connected to an Ethernet is 1 — 4 seconds. Systems
that use remote execution for load sharing have made an
effort to reduce this cost. On Sprite [DO91] r = .33 sec-
onds. Similarly for GLUNIX [VGA94], an operating system
designed for networks of workstations connected by an ATM
network, r = .25 — .5 seconds [Vah95]. The Utopia System
takes ~ 1.0 seconds to establish a connection between source
and target hosts, but once this is done, subsequent remote
executions can take as little as .1 seconds [ZWZD93].

Sprite was implemented on a network of SPARCstation 1
workstations connected by a 10Mb/second Ethernet. On
Sprite preemptive migrations took f = .33 seconds plus
1/b = 2.0 seconds per megabyte of memory transferred.

By implementing migration at the kernel level (on a clus-
ter of Pentium-90 and i486/DX66 workstations), MOSIX
reduces the fixed cost, f, to only 6 ms; the inverse mem-
ory transfer bandwidth, 1/b, is .44 seconds per megabyte
[Bra9s].

The MIST system ([CCKT95]) is implemented on a net-
work of HP9000/720 workstations running HP-UX 9.03 and
connected by a 10Mb/second Ethernet. On this system, pre-
emptive migration takes f = .24 seconds plus 1/b = .99
seconds per megabyte of process memory.

5 Trace-driven Simulation

In this section we present the results of a trace-driven simula-
tion of process migration. We compare two migration strate-
gies: our proposed age-based preemptive migration strategy
(Section 3.2) and a non-preemptive strategy that migrates
newborn processes according to the process name (similar to
strategies proposed by [WZKL93] and [Sve90]). Although we
use a simple name-based strategy, we give it the benefit of
several unfair advantages; for example, the name-lists are
derived from the same trace data used by the simulator.

Section 5.1 describes the simulator and the two strategies
in more detail. We use the simulator to run three experi-
ments. First, in Section 5.2, we evaluate the sensitivity of
each strategy to the parameters r, f, b, and m discussed
in Section 4. Next, in Section 5.3, we choose values for
these parameters that are representative of current systems
and compare the performance of the two strategies in detail.
Lastly, in Section 5.4, we evaluate the analytic criterion for
migration age (proposed in Section 3.2) used in our pre-
emptive migration strategy, compared to criteria used in the
literature.

5.1 The simulator

We have implemented a trace-driven simulation of a network
of six identical workstations.® We selected six daytime inter-
vals from the traces on machine po (see Section 2.1), each
from 9:00 a.m. to 5:00 p.m. From the six traces we ex-
tracted the start times and CPU durations of the processes.
We then simulate a network where each of six hosts executes
(concurrently with the others) the process arrivals from one
of the daytime traces.

Although the workloads on the six hosts are homogeneous
in terms of the job mix and distribution of lifetimes, there
is considerable variation in the level of activity during the
eight-hour trace. For most of the traces, every process arrival
finds at least one idle host in the system, but in the two
busiest traces, a small fraction of processes (0.1%) arrive
to find all hosts busy. In order to evaluate the effect of
changes in system load, we divided the eight-hour trace into
eight one-hour intervals. We refer to these as runs 0 through
7, where the runs are sorted from lowest to highest load.
Run 0 has a total of ~ 15000 processes submitted to the six
simulated hosts; Run 7 has ~ 30000 processes. The average

8The trace-driven simulator and the trace data are available at
http://http.cs.berkeley.edu/~harchol/loadbalancing.html.

duration of processes (for all runs) is ~ .4 seconds. Thus the
total utilization of the system, p, is between .27 and .54.

The birth process of jobs at our hosts is burstier than a
Poisson process. For a given run and a given host, the se-
rial correlation in the process interarrival times is typically
between .08 and .24, which is significantly higher than one
would expect from a Poisson process (uncorrelated interar-
rival times yield a serial correlation of 0.0; perfect correlation
is 1.0).

Although the start times and durations of the processes
come from trace data, the memory size of each process,
which determines its migration cost, is chosen randomly
from a measured distribution (see Section 5.2). This sim-
plification obliterates any correlations between memory size
and other process characteristics’, but it allows us to control
the mean memory size as a parameter and examine its effect
on system performance.

In our system model, we assume that processes are al-
ways ready to run (i.e. are never blocked on I/O). During a
given time interval, we divide CPU time equally among the
processes on the host.

In real systems, part of the migration time is spent on the
source host packaging the transferred pages, part in transit
in the network, and part on the target host unpacking the
data. The size of these parts and whether they can be over-
lapped depend on details of the system. In our simulation
we charge the entire cost of migration to the source host.
This simplification is a pessimistic assumption for advocates
of preemptive migration.

5.1.1 Strategies

We compare a non-preemptive migration strategy with our
proposed preemptive migration strategy (from Section 3.2).
For purposes of comparison, we have tried to make the poli-
cies as simple and as similar as possible. For both types of
migration, we consider performing a migration only when
a new process is born, even though a preemptive strategy
might benefit by initiating migrations at other times. Also,
for both strategies, a host is considered heavily-loaded any
time it contains more than one process; in other words, any
time it would be sensible to consider migration. Finally, we
use the same location policy in both cases: the host with the
lowest instantaneous load is chosen as the target host (ties
are broken by random selection).

Thus the only difference between the two migration poli-
cies is which processes are considered eligible for migration:

name-based non-preemptive migration A process is
eligible for migration only if its name is on a list of pro-
cesses that tend to be long-lived. If an eligible process
is born at a heavily-loaded host, the process is executed
remotely on the target host. Processes cannot be mi-
grated once they have begun execution.

The performance of this strategy depends on the list
of eligible process names. We derived this list by sort-
ing the processes from the traces according to name
and duration and selecting the 15 common names with
the longest mean durations. We chose a threshold on
mean duration that is empirically optimal (for this set of

"In our informal study of processes in our department, we did not
detect any correlations between memory size and process CPU usage.
[KL88] make the same observation in their department.

runs). Adding more names to the list detracts from the
performance of the system, as it allows more short-lived
processes to be migrated. Removing names from the list
detracts from performance as it becomes impossible to
migrate enough processes to balance the load effectively.
Since we used the trace data itself to construct the list,
our results may overestimate the performance benefits
of this strategy.

age-based preemptive migration A process is eligible
for migration only if it has aged for some fraction of its
migration cost. Based on the derivation in Section 3.2,

this fraction is n_lm, where n (respectively m) is the
number of processes at the source (target) host. When
a new process is born at a heavily-loaded host, all pro-
cesses that satisfy the migration criterion are migrated

away.

This strategy understates the performance benefits of
preemptive migration, because it does not allow the sys-
tem to initiate migrations except when a new process ar-
rives. We have modeled strategies that allow migration
at other times, and they do improve the performance
of the preemptive strategy, but we have omitted them
here to facilitate comparison between the two migration
strategies.

As described in Section 3.2, we also modeled other loca-
tion policies based on more complicated predictors of future
loads, but none of these predictors yielded significantly bet-
ter performance than the instantaneous load we use here.

5.1.2 Metrics

We evaluate the effectiveness of each strategy according to
the following performance metrics:

mean slowdown Slowdown is the ratio of wall-clock execu-
tion time to CPU time (thus, it is always greater than
one). The average slowdown of all jobs is a common
metric of system performance. When we compute the
ratio of mean slowdowns (as from different strategies)
we will use normalized slowdown, which is the ratio of
inactive time (the ezcess slowdown caused by queueing
and migration delays) to CPU time. For example, if the
(unnormalized) mean slowdown drops from 2.0 to 1.5,
the ratio of normalized mean slowdowns is .5/1.0 = .5 :
a 50% reduction in delay.

Mean slowdown alone, however, is not a sufficient mea-
sure of the difference in performance of the two strategies;
it understates the advantages of the preemptive strategy for
these two reasons:

1. Skewed distribution of slowdowns: Even in the absence
of migration, the majority of processes suffer small slow-
downs (typically 80% are less than 3.0. See Figure 3).
The value of the mean slowdown will be dominated by
this majority.

2. User perception: From the user’s point of view, the im-
portant processes are the ones in the tail of the distri-
bution, because although they are the minority, they
cause the most noticeable and annoying delays. Elim-
inating these delays might have a small effect on the
mean slowdown, but a large effect on a user’s percep-
tion of performance.

Fraction
of procs

0.5

Distribution of slowdowns

1 2 3 4 5 6 7 8 9 10
Slowdown

Figure 3: Distribution of process slowdowns for run 0 (with
no migration). Most processes suffer small slowdowns, but
the processes in the tail of the distribution are more notice-
able and annoying to users.

Therefore, we will also consider the following two metrics:

variance of slowdown : This metric is often cited as
a measure of the unpredictability of response time
[SPG94], which is a nuisance for users trying to sched-
ule tasks. In light of the distribution of slowdowns,
however, it may be more meaningful to interpret this
metric as a measure of the length of the tail of the dis-
tribution; i.e. the number of jobs that experience long
delays.

number of severely slowed processes : In order to
quantify the number of noticeable delays explicitly, we
consider the number (or percentage) of processes that
are severely impacted by queueing and migration penal-
ties.

5.2 Sensitivity to migration costs

In this section we compare the performance of the non-
preemptive and preemptive strategies over a range of values
of r, f, b and m (the migration cost parameters defined in

Section 4).
For the following experiments, we chose the remote exe-
cution cost r = .3 seconds. We considered a range for the

fixed migration cost of .1 < f < 10 seconds.

The memory transfer cost is the quotient of m (the mem-
ory size of the migrant process) and b (the bandwidth of the
network). We chose the memory transfer cost from a dis-
tribution with the same shape as the distribution of process
lifetimes, setting the mean memory transfer cost (MMTC)
to a range of values from 1 to 64.

The shape of the memory transfer cost distribution is
based on an informal study of memory-use patterns on the
same machines from which we collected trace data. The im-
portant feature of this distribution is that there are many
jobs with small memory demands and a few jobs with very
large memory demands. The exact form of this distribution
does not affect the performance of either migration strat-
egy strongly, but of course the mean (MMTC) does have a
strong effect.

Figures 4a and 4b are contour plots of the ratio of the per-
formance of the two migration strategies using normalized
slowdown. Specifically, for each of the eight one-hour runs

we calculate the mean (respectively standard deviation) of
the slowdown imposed on all processes that complete during
the hour. For each run, we then take the ratio of the means
(standard deviations) of the two strategies. Lastly we take
the geometric mean [HP90] of the eight ratios.

The two axes in Figure 4 represent the two components
of the cost of preemptive migration, namely the fixed cost
(f) and the MMTC (m/b). As mentioned above, the cost
of non-preemptive migration (r) is fixed at .3 seconds. As
expected, increasing either the fixed cost of migration or the
MMTC hurts the performance of preemptive migration. The
contour line marked 1.0 indicates the crossover where the
performance of preemptive and non-preemptive migration is
equal (the ratio is 1.0). For smaller values of the cost param-
eters, preemptive migration performs better; for example, if
the fixed migration cost is .33 seconds and the MMTC is
2 seconds, the normalized mean slowdown with preemptive
migration is ~ 40% lower than with non-preemptive migra-
tion. When the fixed cost of migration or the MMTC are
very high, almost all processes are ineligible for preemptive
migration; thus, the preemptive strategy does almost no mi-
grations. The non-preemptive strategy is unaffected by these
costs so the non-preemptive strategy can be more effective.

Figure 4b shows the effect of migration costs on the stan-
dard deviation of slowdowns. The crossover point — where
non-preemptive migration surpasses preemptive migration
— is considerably higher in Figure 4b than in Figure 4a.
Thus there is a region where preemptive migration yields a
higher mean slowdown than non-preemptive migration, but
a lower standard deviation. The reason for this is that non-
preemptive migration occasionally chooses a process for re-
mote execution that turns out to be short-lived. These pro-
cesses suffer large delays (relative to their run times) and
add to the tail of the distribution of slowdowns. In the next
section, we show cases in which the standard deviation of
slowdowns is actually worse with non-preemptive migration
than with no migration at all (three of the eight runs).

5.3 Comparison of preemptive and non-preemptive strate-
gies

In this section we choose migration cost parameters repre-
sentative of current systems (see Section 4.2) and use them
to examine more closely the performance of the two migra-
tion strategies. The values we chose are:

e r: the cost of remote execution, .3 seconds
o f: the fixed cost of preemptive migration, .3 seconds
e b: the memory transfer bandwidth, .5 MB per second

e m: the mean memory size of migrant processes, 1 MB

In Figures 4a and 4b, the point corresponding to these
parameter values is marked with an “X”. Figure 5 shows the
performance of the two migration strategies at this point
(compared to the base case of no migration).

Non-preemptive migration reduces the normalized mean
slowdown (Figure 5a) by less than 20% for most runs (and
~ 40% for the two runs with the highest loads). Preemptive
migration reduces the normalized mean slowdown by 50%
for most runs (and more than 60% for two of the runs). The
performance improvement of preemptive migration over non-
preemptive migration is typically between 35% and 50%.

(@ Ratio of mean slowdowns
10

w

Fixed migration cost (sec.)
[

01 : : : :
1 2 4 8 16 32 64

Mean memory transfer cost (sec.)

(b) Ratio of std of slowdowns
10

w

PREEMPTIVE
BETTER EXCERT
UPPER RIGHT

Fixed migration cost (sec.)
[

01 : : : :
1 2 4 8 16 32 64

Mean memory transfer cost (sec.)

Figure 4: (a) The performance of preemptive migration relative to non-preemptive migration deteriorates as the cost of
preemptive migration increases. The two axes are the two components of the preemptive migration cost. The cost of non-
preemptive migration is held fixed. The “X” marks the particular set of parameters we will consider in the next section. (b)
The standard deviation of slowdown may give a better indication of a user’s perception of system performance than mean
slowdown. By this metric, the benefit of preemptive migration is even more significant.

As discussed above, we feel that the mean slowdown (nor-
malized or not) understates the performance benefits of pre-
emptive migration. We have proposed other metrics to try
to quantify these benefits. Figure 5b shows the standard de-
viation of slowdowns, which reflects the number of severely
impacted processes. Figures 5c¢ and 5d explicitly measure
the number of severely impacted processes, according to two
different thresholds of acceptable slowdown. By these met-
rics, the benefits of migration in general appear greater, and
the discrepancy between preemptive and non-preemptive mi-
gration appears much greater. For example in Figure 5d, in
the absence of migration, 7 — 18% of processes are slowed by
a factor of 5 or more. Non-preemptive migration is able to
eliminate 42 — 62% of these, which is a significant benefit,
but preemptive migration consistently eliminates nearly all
(86 —97%) severe delays.

An important observation from Figure 5b is that for sev-
eral runs, non-preemptive migration actually makes the per-
formance of the system worse than if there were no migration
at all. For the preemptive migration strategy, this outcome
is nearly impossible, since migrations are only performed if
they improve the slowdowns of all processes involved (in ex-
pectation). In the worst case, then, the preemptive strategy
will do no worse than the case of no migration (in expecta-
tion).

Another benefit of preemptive migration is graceful degra-
dation of system performance as load increases (as shown in
Figure 5). In the presence of preemptive migration, both
the mean and standard deviation of slowdown are nearly
constant, regardless of the overall load on the system.

5.3.1 Shortcomings of Non-preemptive Migration

The alternate metrics discussed above shed some light on the
reasons for the performance difference between preemptive
and non-preemptive migration. We consider two kinds of

mistakes that are possible for either migration strategy:

Migrating short-lived jobs : This type of error imposes
large slowdowns on the migrated process, wastes net-
work resources, and fails to effect significant load bal-
ancing. Under non-preemptive migration, this error oc-
curs when a process whose name is on the eligible list
turns out to be short-lived. Our preemptive migration
strategy eliminates this type of error by guaranteeing
that the performance of a migrant improves in expecta-
tion.

Failing to migrate long-lived jobs : This type of error
imposes moderate slowdowns on a potential migrant,
and, more importantly, inflicts delays on short jobs that
are forced to share a processor with a CPU hog.

Under non-preemptive migration, this error occurs
whenever a long-lived process is not on the name-list,
possibly because it is an unknown program or an un-
usually long execution of a typically brief program. Pre-
emptive migration can correct these errors by migrating
long jobs later in their lives.

Even occasional mistakes of the second kind can have a
large impact on performance, because one long job on a busy
machine will impede many small jobs. This effect is aggra-
vated by the serial correlation between arrival times (see
Section 5.1), which suggests that a busy host is likely to
receive many future arrivals.

In our simulations the second type of error was more signif-
icant: most severely-slowed jobs suffered because they were
forced to run on a heavily-loaded host, not because they suf-
fered migration delays. Specifically, under non-preemptive
migration almost all (99.2%) processes that suffered slow-
downs greater than 3.0 were short processes (< 1 second)
that never migrated; their slowdowns were caused by run-
ning on a busy host.

30%

20%

10%

0%

20%

15%

10%

5%

0%

Figure 5:
slowdown
3 or more
5 or more

Mean slowdown

[3) 1 2 3 a

no migration]
non-preemptive, name-based migration []
preemptive, age-based migration [

5 6 7
run number

Standard deviation of slowdown

Lhih

no migration []
non-preemptive, name-based migration []
preemptive, age-based migration [

5 6 7
run number

Processes slowed by a factor of 3 or more

] no migration]
non-preemptive, name-hased mjgration]
preemptive, age-hased mijgration [

i

a 5 6 7
run number

Processes slowed by a factor of 5 or more

o 1 2 3 a

no migration []
non-preemptive, name-based migration]
preemptive, age-hased mjgration [

5 6 7
run number

(a) Mean slowdown. (b) Standard deviation of

. (c
. (d
A

) Percentage of processes slowed by a factor of

) Percentage of processes slowed by a factor of

Il shown at cost point X from Figure 4.

Preemptive migration is able to help some of these pro-
cesses by performing more — and more effective — migra-
tions, but still 96% of severe slowdowns are due to high loads,
not migration delays. This suggests that there are additional
performance benefits to be gained from improving load bal-
ance, even at the cost of additional migration.

The primary reason for the success of preemptive migra-
tion is its ability to identify long jobs accurately and to
migrate those jobs away from busy hosts. In our simula-
tions, the average lifetime of migrant processes under non-
preemptive migration was between 1.5 and 2.1 seconds (the
mean lifetime for all processes is 0.4 seconds). Our preemp-
tive migration policy was better able to identify long jobs;
the average age of migrant processes was between 4.1 and
5.7 seconds.

There 1s, however, one type of migration error that is
more problematic for preemptive migration than for non-
preemptive migration: stale load information. A target host
may have a low load when a migration is initiated, but its
load may have increased by the time the migrant arrives.
This is more likely for a preemptive migration because the
migration time is longer. In our simulations, we found that
these errors do occur, although infrequently enough that
they do not have a severe impact on performance.

Specifically, we counted the number migrant processes
that arrived at a target host and found that the load was
higher than it had been at the source host when migration
began. For most runs, this occurred less than 0.5% of the
time (for two runs with high loads it was 0.7%). Some-
what more often, ~ 3% of the time, a migrant process ar-
rived at a target host and found that the load at the target
was greater than the current load at the source. These re-
sults suggest that the performance of a preemptive migration
strategy might be improved by rechecking loads at the end
of a memory transfer and, if the load at the target is too
high, aborting the migration and restarting the process on
the source host.

One other potential problem with preemptive migration is
the volume of network traffic that results from large mem-
ory transfers. In our simulations, we did not model network
congestion, on the assumption that the traffic generated by
migration would not be excessive. This assumption seems
to be reasonable: under our preemptive migration strategy
fewer than 4% of processes are migrated once and fewer than
.25% of processes are migrated more than once. Further-
more, there is seldom more than one migration in progress
at a time.

In summary, the advantage of preemptive migration —
its ability to identify long jobs and move them away from
busy hosts — overcomes its disadvantages (longer migration
times and stale load information).

5.4 Evaluation of analytic migration criterion

As derived in Section 3.2, the minimum age for a migrant
process according to the analytic criterion is

Minimum

__ Migration cost
migration age

(n—m)

where n is the load at the source host and m is the load at
the target host (including the potential migrant).

In order to evaluate the performance of this criterion, we
will compare it with the fived parameter criterion:

Mean slowdown

2.5
best fixed parametric min. age []
analytic minimum age []
2.0
1.5
1.0

0] 1 2 3 4 5 6 7
(0.3) (0.5) (0.5) (0.3) (0.3) (0.5) (0.8) (0.9)

Figure 6: The mean slowdown for eight runs, using the two
criteria for minimum migration age. The value of the best
fixed parameter « is shown in parentheses for each run.

Mlmmum = a x Migration cost
migration age
where « 1s a free parameter. For comparison, we will use
the best fired parameter, which is, for each run, the best
parameter for that run, chosen empirically by excuting the
run with a range of parameter values (of course, this gives
the fixed parameter criterion a considerable advantage).

As discussed in Section 3.2, MOSIX uses the parameter
a = 1.0, based on a worst-case analysis of the slowdown
imposed on the migrant. Although this age threshold offers
a strict limit on the slowdown seen by a migrant process, it
imposes greater slowdowns on the processes that would have
benefited if a younger process were allowed to migrate away.
A previous simulation study [KL88] chose a lower value for
this parameter (o = 0.1), but did not explain how it was
chosen.

Figure 6 compares the performance of the analytic mini-
mum age criterion with the best fixed parameter (a). The
best fixed parameter varies considerably from run to run,
and appears to be roughly correlated with the average load
during the run (the runs are sorted in increasing order of
total load).

The performance of the analytic criterion is always within
a few percent of (and sometimes better than) the perfor-
mance of the best fixed value criterion. The advantage of
the analytic criterion is that it is parameterless, and there-
fore more robust across a variety of workloads. We feel that
the elimination of one free parameter is a useful result in an
area with so many (usually hand-tuned) parameters.

6 Weaknesses of the model

Our simulation ignores a number of factors that would affect
the performance of migration in real systems:

environment : Our migration strategy takes advantage
of the used-better-than-new property of process life-
times. In an enviroment with a different distribution,
this strategy will not be effective. We are currently ex-
amining the distribution of lifetimes on a Cray C90 at
the San Diego Supercomputer Center.

I/O : Our model considers all jobs CPU-bound; thus, their
response time necessarily improves if they run on a less-
loaded host. For 1/O bound jobs, however, CPU con-
tention has little effect on response time. These jobs
would benefit less from migration.

dependencies : Our model of migration cost considers only
the cost of transferring a process, and not the additional
costs imposed by future interaction and other 1/O. For
some jobs, these additional costs might be significant.
To see how large a role this plays, we noted the names of
the processes that appear most frequently in our traces
(with CPU time greater than 1 second, since these are
the processes most likely to be migrated). The most
common names were “cclplus” and “ccl,” both of which
are CPU bound. Next most frequent were: trn, cpp, 1d,
jove (a version of emacs), and ps. So although some
jobs in our traces are in reality interactive, our simple
model is reasonable for many of the most common jobs.

memory size : One weakness of our model is that we
choose memory sizes from a measured distribution and
therfore our model ignores any correlation between
memory size and other process characteristics. This
choice however allows us to control the mean memory
size as a parameter and examine its effect on system
performance. In this paper we’ve made the pessimistic
simplification that a migrant’s entire memory must be
transferred, although this is not always the case.

network contention : Our model does not consider the
effect of increased network traffic as a result of process
migration. We observe, however, that for the load lev-
els we simulated, migrations are occasional (one every
few seconds), and that there is seldom more than one
migration in progress at a time.

7 Conclusions

e Migrating a long job away from a busy host helps not
only the long job, but also the many short jobs that are
expected to arrive at the host in the future. A busy
host is expected to receive many arrivals because of the
serial correlation (“burstiness”) of the arrival process.

e Preemptive migration outperforms non-preemptive mi-
gration even when memory-transfer costs are high,
for the following reason: non-preemptive name-based
strategies choose processes for migration that are ex-
pected to have long lives. If this prediction is wrong,
and a process runs longer than expected, it cannot be
migrated away, and many subsequent small processes
will be delayed. A preemptive strategy is able to make
a more accurate prediction about the duration of a pro-
cess (based on the its age) and, more importantly, if
the prediction is wrong, it can recover by migrating the
process later.

e Using the functional form of the distribution of process
lifetimes, we have derived a criterion for the minimum
time a process must age before being migrated. This
criterion is parameterless and robust across a range of
loads.

e Exclusive use of mean slowdown as a metric of system
performance understates the benefits of load balancing

as perceived by users, and especially understates the
benefits of preemptive load balancing.

o Although preemptive migration is difficult to imple-
ment, several systems have chosen to implement it for
reasons other than load balancing. Our results suggest
these systems would benefit from preemptive load bal-
ancing.

8 Acknowledgements

We’d like to thank Tom Anderson and the members of the
NOW group for comments and suggestions on our experi-
mental setup, as well as on the preparation of this paper.
We are also greatly indebted to the anonymous reviewers
from SIGMETRICS and SOSP, and to John Zahorjan, whose

comments greatly improved the quality of this paper.

References

[AE8T7] Rakesh Agrawal and Ahmed Ezzet. Location inde-
pendent remote execution in NEST. IEEE Transac-
tions on Software Engineering, 13(8):905-912, Au-
gust 1987.

[AF89] Y. Artsy and R. Finkel. Designing a process migration

facility: The Charlotte experience. IEEE Computer,
pages 47-56, September 1989.

[BF81] Raymond M. Bryant and Raphael A. Finkel. A sta-
ble distributed scheduling algorithm. In 2nd Inter-
national Conference on Distributed Computing Sys-
tems, pages 314-323, 1981.

[BK90] Flavio Bonomi and Anurag Kumar. Adaptive optimal
load balancing in a nonhomogeneous multiserver sys-
tem with a central job scheduler. IEEE Transactions
on Computers, 39(10):1232-1250, October 1990.

[Bra9s] Avner Braverman, 1995. Personal Communication.

[BSW93] Amnon Barak, Guday Shai, and Richard G. Wheeler.
The MOSIX Distributed Operating System:Load
Balancing for UNIX. Springer Verlag, Berlin, 1993.

[CCK+95] Jeremy Casas, Dan L. Clark, Ravi Konuru, Steve W.
Otto, Robert M. Prouty, and Jonathan Walpole.
Mpvm: A migration transparent version of pvm.
Computing Systems, 8(2):171-216, Spring 1995.

[CK87] Thomas L. Casavant and Jon G. Kuhl. Analysis of
three dynamic distributed load-balancing strategies
with varying global information requirements. In 7th
International Conference on Distributed Computing
Systems, pages 185-192, September 1987.

[DHB95] Allen B. Downey and Mor Harchol-Balter. A note on
“The limited performance benefits of migrating ac-
tive processes for load sharing”. Technical Report
UCB//CSD-95-888, University of California, Berke-
ley, November 1995.

[DO91] Fred Douglis and John Ousterhout. Transparent pro-
cess migration: Design alternatives and the sprite im-
plementation. Software — Practice and Experience,
21(8):757-785, August 1991.

[EB93] D. J. Evans and W. U. N. Butt. Dynamic load balanc-
ing using task-transfer probablilites. Parallel Com-
puting, 19:897-916, August 1993.

[ELZ86] Derek L. Eager, Edward D. Lazowska, and John Za-
horjan. Adaptive load sharing in homogeneous dis-
tributed systems. IEEE Transactions on Software
Engineering, 12(5):662-675, May 1986.

[ELZ88] Derek L. Eager, Edward D. Lazowska, and John Za-
horjan. The limited performance benefits of migrating
active processes for load sharing. In SIGMETRICS,
pages 662—-675, May 1988.

[GGItol]

[HJ90]

[HP90]

[KLSS]

[Kun91]

[LL90]

[LLMSS]

[LMS82]

[LOS6]

[LR93]

[Mil93]

[MTS90]

[Nut94]

[PM83]

[PTS88]

[Rom91]

[Ros65]

[SPG94]

[Sve90]

G.W. Gerrity, A. Goscinski, J. Indulska, W. Toomey,
and W. Zhu. RHODOS-a testbed for studying de-
sign issues in distributed operating systems. In To-
wards Network Globalization (SICON 91): 2nd In-
ternational Conference on Networks, pages 268-274,
September 1991.

Anna Haé and Xiaowel Jin. Dynamic load balancing
in a distributed system using a sender-initiated algo-
rithm. Journal of Systems Software, 11:79-94, 1990.

John L. Hennessy and David A. Patterson. Com-
puter Architecture A Quantitative Approach. Mor-
gan Kaufmann Publishers, San Mateo, CA, 1990.

Phillip Krueger and Miron Livny. A comparison of
preemptive and non-preemptive load distributing. In
8th International Conference on Distributed Com-
puting Systems, pages 123—-130, June 1988.

Thomas Kunz. The influence of different workload de-
scriptions on a heuristic load balancing scheme. IEEE
Transactions on Software Engineering, 17(7):725—
730, July 1991.

M. Litzkow and M. Livny. Experience with the Con-
dor distributed batch system. In IEEE Workshop
on Experimental Distributed Systems, pages 97-101,
1990.

M.J. Litzkow, M. Livny, and M.W. Mutka. Con-
dor - a hunter of idle workstations. In 8th Inter-
national Conference on Distributed Computing Sys-
tems, June 1988.

Miron Livny and Myron Melman. Load balancing in
homogeneous broadcast distributed systems. In ACM
Computer Network Performance Symposium, pages
47-55, April 1982.

W. E. Leland and T. J. Ott. Load-balancing heuristics
and process behavior. In Proceedings of Performance
and ACM Sigmetrics, volume 14, pages 54-69, 1986.

Hwa-Chun Lin and C.S. Raghavendra. A state-
aggregation method for analyzing dynamic load-
balancing policies. In IEEE 13th International Con-
ference on Distributed Computing Systems, pages
482-489, May 1993.

Dejan S. Milojicic. Load Distribution: Implementa-
tion for the Mach Microkernel. PhD Dissertation,
University of Kaiserslautern, 1993.

Ravi Mirchandaney, Don Towsley, and John A.
Stankovic. Adaptive load sharing in heterogeneous
distributed systems. Journal of Parallel and Dis-
tributed Computing, 9:331-346, 1990.

Mark Nuttall. Survey of systems providing process or
object migration. Technical Report DoC94/10, Impe-
rial College Research Report, 1994.

M.L. Powell and B.P. Miller. Process migrations in
DEMOS/MP. In ACM-SIGOPS 6th ACM Sympo-
stum on Operating Systems Principles, pages 110—
119, November 1983.

Spiridon Pulidas, Don Towsley, and John A.
Stankovic. Imbedding gradient estimators in load bal-
ancing algorithms. In 8th International Conference
on Distributed Computing Systems, pages 482—490,
June 1988.

C. Gary Rommel. The probability of load balancing

success in a homogeneous network. IEEE Transac-
tions on Software Engineering, 17:922-933, 1991.

Robert F. Rosin. Determining a computing center en-
vironment. Communications of the ACM, 8(7), 1965.

A. Silberschatz, J.L. Peterson, and P.B. Galvin. Op-
erating System Concepts, 4th Edition. Addison-
Wesley, Reading, MA, 1994.

Anders Svensson. History, an intelligent load shar-
ing filter. In IEEE 10th International Conference
on Daistributed Computing Systems, pages 546-553,
1990.

[Thio1]

[TLCS5]

[TvRaHvSS90]

[Vah9s]

[VGA94]

[WMS85]

[WZKL93]

[Zay87]

[Zho87]

[ZWZD93]

G. Thiel. Locus operating system, a transparent
system. Computer Communications, 14(6):336-346,
1991.

Marvin M. Theimer, Keith A. Lantz, and David R
Cheriton. Preemptable remote execution facilities for
the V-System. In ACM-SIGOPS 10th ACM Sympo-
stum on Operating Systems Principles, pages 2—12,
December 1985.

A.S. Tanenbaum, R. van Renesse adn H. van
Staveren, and G.J. Sharp. Experiences with the
Amoeba distributed operating system. Communica-
tions of the ACM, pages 336—-346, December 1990.

Amin Vahdat, 1995. Personal Communication.

Amin M. Vahdat, Douglas P. Ghormley, and
Thomas E. Anderson. Efficient, portable, and robust
extension of operating system functionality. Technical
Report UCB//CSD-94-842, University of California,
Berkeley, 1994.

Yung-Terng Wang and Robert J.T. Morris. Load shar-
ing in distributed systems. IEEE Transactions on
Computers, c-94(3):204-217, March 1985.

J. Wang, S. Zhou, K.Ahmed, and W. Long. LS-
BATCH: A distributed load sharing batch system.
Technical Report CSRI-286, Computer Systems Re-
search Institute, University of Toronto, April 1993.

E. R. Zayas. Attacking the process migration bottle-
neck. In ACM-SIGOPS 11th ACM Symposium on
Operating Systems Principles, pages 13-24, 1987.

Songnian Zhou. Performance studies for dynamic
load balancing in distributed systems. PhD Disserta-
tion, University of California, Berkeley, 1987.

S. Zhou, J. Wang, X. Zheng, and P. Delisle. Utopia:
a load-sharing facitlity for large heterogeneous dis-
tributed computing systems. Software — Practice and
Expeience, 23(2):1305-1336, December 1993.

