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Abstract

We measure the distribution of lifetimes for UNIX processes

and propose a functional form that �ts this distribution well.

We use this functional form to derive a policy for preemptive

migration, and then use a trace-driven simulator to compare

our proposed policy with other preemptive migration poli-

cies, and with a non-preemptive load balancing strategy. We

�nd that, contrary to previous reports, the performance ben-

e�ts of preemptive migration are signi�cantly greater than

those of non-preemptive migration, even when the memory-

transfer cost is high. Using a model of migration costs rep-

resentative of current systems, we �nd that preemptive mi-

gration reduces the mean delay (queueing and migration) by

35 { 50%, compared to non-preemptive migration.

1 Introduction

Most systems that perform load balancing use remote ex-

ecution (i.e. non-preemptive migration) based on a priori

knowledge of process behavior, often in the form of a list of

process names eligible for migration. Although some systems

are capable of migrating active processes, most do so only

for reasons other than load balancing (such as preserving

autonomy). A previous analytic study ([ELZ88]) discour-

ages implementing preemptive migration for load balancing,

showing that the additional performance bene�t of preemp-

tive migration is small compared with the bene�t of simple

non-preemptive migration schemes. But simulation stud-

ies (which can use more realistic workload descriptions) and

implemented systems have shown greater bene�ts for pre-

emptive migration ([KL88] and [BSW93]). This paper uses a

measured distribution of process lifetimes and a trace-driven

simulation to investigate these con
icting results.

1.1 Load balancing taxonomy

On a network of shared processors, load balancing is the

idea of migrating processes across the network from hosts

with high loads to hosts with lower loads. The motivation

for load balancing is to reduce the average completion time
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of processes and improve the utilization of the processors.

Analytic models and simulation studies have demonstrated

the performance bene�ts of load balancing, and these results

have been con�rmed in existing distributed systems (see Sec-

tion 1.4).

An important part of the load balancing strategy is the

migration policy, which determines when migrations occur

and which processes are migrated. This is the question we

address in this paper.
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Process migration for purposes of load balancing comes

in two forms: remote execution (also called non-preemptive

migration), in which some new processes are (possibly auto-

matically) executed on remote hosts, and preemptive migra-

tion, in which running processes may be suspended, moved

to a remote host, and restarted. In non-preemptive migra-

tion only newborn processes are migrated.

Load balancing may be done explicitly (by the user) or

implicitly (by the system). Implicit migration policies may

or may not use a priori information about the function of

processes, how long they will run, etc.

Since the cost of remote execution is usually signi�cant

relative to the average lifetime of processes, implicit non-

preemptive policies require some a priori information about

job lifetimes. This information is often implemented as an

eligibility list (e.g. [Sve90]) that speci�es (by process name)

which processes may be migrated.

In contrast, most preemptive migration policies do not use

a priori information, since this it is often di�cult to main-

tain and preemptive strategies can perform well without it.

These systems use only system-visible data like the current

age of each process or its memory size.

This paper examines the performance bene�ts of pre-

emptive, implicit load balancing strategies that assume

no a priori information about processes.

1.2 Process Model

In our model, processes use two resources: CPU and mem-

ory (we do not consider I/O). Thus, we use \age" to mean

CPU age (the CPU time a process has used thus far) and

\lifetime" to mean CPU lifetime (the total CPU time from

start to completion). Since processes may be delayed while

on the run queue or while migrating, the slowdown imposed

on a process is

1

The other half of a load balancing strategy is the location policy

| the selection a new host for the migrated process. Previous work

([Zho87] and [Kun91]), has suggested that choosing the target host

with the shortest CPU run queue is both simple and e�ective. Our

work con�rms the relative unimportance of location policy.



Slowdown of process p =

wall time (p)

CPU time (p)

where wall-time(p) is the total time p spends running, wait-

ing in queue, or migrating.

1.3 Outline

The e�ectiveness of load balancing | either by remote exe-

cution or preemptive migration | depends strongly on the

nature of the workload, including the distribution of process

lifetimes and the arrival process. This paper presents empir-

ical observations about the workload on a network of UNIX

workstations, and uses a trace-driven simulation to evalu-

ate the impact of this workload on proposed load balancing

strategies.

Section 2 presents a study of the distribution of process

lifetimes for a variety of workloads in an academic environ-

ment, including instructional machines, research machines,

and machines used for system administration. We �nd that

the distribution is predictable (with goodness of �t > 99%)

and consistent across a variety of machines and workloads.

As a rule of thumb, the probability that a process with CPU

age of one second uses more than T seconds of total CPU

time is 1=T (see Figure 1).

Our measurements are consistent with the results of

[LO86], but this prior work has been incorporated in few

subsequent analytic and simulator load balancing studies.

This omission is unfortunate, since the results of these load

balancing studies are quite sensitive to the lifetime model.

Our observations of lifetime distributions have the follow-

ing consequences for load balancing:

� They suggest that it is preferable to migrate older pro-

cesses because these processes have a higher probability

of living long enough (eventually using enough CPU) to

amortize their migration cost.

� A functional model of the distribution provides an an-

alytic tool for deriving the eligibility of a process for

migration as a function of its current age, migration

cost, and the loads at its source and target host (the

eligibility criterion doesn't rely on free parameters that

must be hand-optimized). This tool is generally useful

for analysis of system behavior.

Speci�cally, Section 3 shows the derivation a migration eli-

gibility criterion that guarantees that the slowdown imposed

on a migrant process is lower (in expectation) than it would

be without migration. According to this criterion, a process

is eligible for migration only if its

CPU age >

1

n �m

�migration cost

where n (respectively m) is the number of processes at the

source (target) host.

In Section 5 we use a trace-driven simulation to compare

our preemptive migration policy (from Section 3) with a non-

preemptive policy based on name-lists. The simulator (see

Section 5.1) uses start times and durations from traces of

a real system, and migration costs chosen from a measured

distribution.

We use the simulator to run three experiments: �rst (Sec-

tion 5.2) we evaluate the e�ect of migration cost on the rel-

ative performance of the two strategies. Not surprisingly,

we �nd that as the cost of preemptive migration increases,

it becomes less e�ective. Nevertheless, preemptive migra-

tion performs better than non-preemptive migration even

with surprisingly large migration costs (despite several con-

servative assumptions that give non-preemptive migration

an unfair advantage).

Next (Section 5.3) we choose a speci�c model of preemp-

tive and non-preemptive migration costs (described in Sec-

tion 4), and use this model to compare the two migration

strategies in more detail. We �nd that preemptive migra-

tion reduces the mean delay (queueing and migration) by 35

{ 50%, compared to non-preemptive migration. We also pro-

pose several alternative metrics intended to measure users'

perception of system performance. By these metrics, the

additional bene�ts of preemptive migration (compared to

non-preemptive migration) appear even more signi�cant.

Finally, in Section 5.4 we use the simulator to compare

our preemptive migration strategy with other preemptive

schemes in the literature.

We �nish with a self-criticism of our model in Section 6

and conclusions in Section 7.

1.4 Related Work

1.4.1 Systems

Most existing systems provide some form of user-controlled

remote execution, but relatively few provide automated load

balancing. Of the ones that do, the majority are based on

implicit remote execution of newborn processes; few use pre-

emptive migration.

(The following taxonomy is based in large part on

[Nut94].)

The following systems have implemented explicit remote

execution and/or explicit preemptive migration; that is,

both forms of migration are only performed at the user's

request: Accent [Zay87], Locus [Thi91], Utopia [ZWZD93],

DEMOS/MP [PM83], V [TLC85], NEST [AE87], and MIST

[CCK

+

95].

Some other systems provide implicit remote execution, but

perform preemptive migration only at the request of a user or

for reasons other than load balancing (such as preserving au-

tonomy): Amoeba [TvRaHvSS90], Charlotte [AF89], Sprite

[DO91], Condor [LLM88], and Mach [Mil93]. Although these

systems are capable of migrating active processes (with vary-

ing degrees of transparency), none have implemented a pol-

icy that speci�es which processes should be preempted for

purposes of load balancing.

Only a few systems have implemented automated load bal-

ancing policies with preemptive migration: MOSIX[BSW93]

and RHODOS [GGI

+

91]. The MOSIX load balancing

scheme is similar to the strategies recommended in this pa-

per; our results support their claim that their scheme is ef-

fective and robust.

In general, non-preemptive load balancing strategies de-

pend on a priori information about processes; e.g., ex-

plicit knowledge about the runtimes of processes or user-

provided lists of migratable processes ([AE87], [LL90],

[DO91], [ZWZD93]).
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Figure 1: Distribution of process lifetimes for processes with lifetimes greater than 1 second, observed on machine \po" mid-

semester. The dotted (thicker) line shows the measured distribution; the solid (thinner) line shows the least squares curve

�t. To the right: the same distribution shown on a log-log scale. The straight line in log-log space indicates that the process

lifetime distribution can be modeled by T

k

, where k is the slope of the line.

1.4.2 Studies

Although few systems use preemptive migration for load bal-

ancing, there have been many simulation studies and an-

alytic models showing the performance bene�ts of various

load balancing strategies. Some of these studies have focused

on load balancing by remote execution ([LM82], [WM85],

[CK87], [Zho87], [PTS88], [Kun91], [HJ90], [ELZ86]); others

have compared the performance of systems with and without

preemptive migration ([ELZ88], [KL88]).

Our work di�ers from [ELZ88] in both system model and

workload description. [ELZ88] model a server farm in which

incoming jobs have no a�nity for a particular processor, and

thus the cost of initial placement (remote execution) is free.

This is di�erent from our model, a network of workstations,

in which incoming jobs arrive at a particular host and the

cost of moving them away, even by remote execution, is sig-

ni�cant.

Also, [ELZ88] use a degenerate hyperexponential distribu-

tion of lifetimes that includes many jobs with zero lifetime,

and far fewer short jobs (0 { 1 seconds) than we observed.

For a more detailed explanation of this distribution and its

e�ect on the study, see [DHB95].

[KL88] use a hyperexponential lifetime distribution that

approximates closely the distribution we observed; as a re-

sult, their �ndings are largely in accord with ours. One

di�erence between their work and ours is that they used a

synthetic workload with Poisson arrivals. The workload we

observed, and used in our trace-driven simulations, exhibits

serial correlation; i.e. it is more bursty than a Poisson pro-

cess. Also, our migration policy di�ers from [KL88] in that

our proposed migration policy uses preemptive migration ex-

clusively, rather than in addition to, remote execution.

Like us, [BF81] discuss the distribution of process lifetimes

and its e�ect on preemptive migration policy, but their hypo-

thetical distributions are not based on system measurements.

Also like us, they choose migrant processes on the basis of

expected slowdown on the source and target hosts, but their

estimation of those slowdowns is very di�erent from ours.

In particular, they use the distribution of process lifetimes

to predict a host's future load as a function of its current

load and the ages of the processes running there. We have

examined this issue in detail and found (1) that this model

fails to predict future loads because it ignores future arrivals,

and (2) that current load is the best predictor of future load.

Thus, in our estimates of slowdown, we will assume that the

future load on a host is equal to the current load.

2 Distribution of lifetimes

The general shape of the distribution of process lifetimes in

an academic environment has been known for a long time

[Ros65]: there are many short jobs and a few long jobs, and

the variance of the distribution is greater than that of an

exponential distribution.

In 1986 [LO86] proposed a functional form for the pro-

cess lifetime distribution, based on measurements of the

lifetimes of 9.5 million UNIX processes between 1984 and

1985. Leland and Ott concluded that process lifetimes have

a UBNE (used-better-than-new-in-expectation) type of dis-

tribution. That is, the greater the current CPU age of a

process, the greater its expected remaining CPU lifetime.
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Speci�cally, they found that for T > 3 seconds, the probabil-

ity of a process' lifetime exceeding T seconds is rT

k

, where

�1:25 < k < �1:05 (r normalizes the distribution).

In contrast to [LO86], Rommel ([Rom91]) claimed that his

measurements show that \long processes have exponential

service times."

Because of the importance of the process lifetime distribu-

tion to load balancing policies, we performed an independent

study of this distribution, which we describe in Section 2.1.

2

In contrast, the exponential distribution is memoryless; the ex-

pected remaining lifetime of a process is independent of age.



Name Total Num. Estim. Std. R

2

of Number Procs. Lifetime Error val

Host Procs. with Distrib.

Studied Age> 1 Curve

po1 77440 4107 T

�0:97

.016 0.997

po2 154368 11468 T

�1:22

.012 0.999

po3 111997 7524 T

�1:27

.021 0.997

cory 182523 14253 T

�0:88

.030 0.982

pors 141950 10402 T

�0:94

.015 0.997

bugs 83600 4940 T

�0:82

.007 0.999

faith 76507 3328 T

�0:78

.045 0.964

Table 1: The estimated lifetime distribution curve for each

machine measured, and the associated goodness of �t statis-

tics. Description of machines: Po is a heavily-used DEC-

server5000/240, used primarily for undergraduate course-

work. Po1, po2, and po3 refer to measurements made on

po mid-semester, late-semester, and end-semester. Cory is

a heavily-used machine, used for coursework and research.

Porsche is a less frequently-used machine, used primarily for

research on scienti�c computing. Bugs is a heavily-used ma-

chine, used primarily for multimedia research. Faith is an

infrequently-used machine, used both for video applications

and system administration.

In our study the functional form proposed by [LO86] �ts

all our observed distributions well, for processes with life-

times greater than 1 second. For the longest jobs (> 1000

seconds), there are so few processes in our sample that the

�t deteriorates, but overall the goodness of �t of the model

is excellent.
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This functional form is consistent across a vari-

ety of machines and workloads, and although the parameter,

k, varies from -1.3 to -.8, it is generally near �1:0. Thus, as

a rule of thumb,

1. The probability that a process with age 1 second uses

at least T seconds of total CPU time is about 1=T .

2. The probability that a process with age T seconds uses

at least an additional T seconds of CPU time is about

1=2. Thus, the median remaining lifetime of a process

is equal to its current age.

Despite the [LO86] study, many researchers have contin-

ued to assume an exponential process lifetime distribution in

their analysis of migration strategies (e.g., [MTS90], [BK90]

[EB93], [LR93]). The reasons for assuming an exponen-

tial lifetime distribution include: (1) analytic tractability,

and (2) the belief that the exponential distribution is close

enough to real distributions that the results of the analyses

are not a�ected.

In this paper, we make the following claims about lifetime

distributions:
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Throughout this paper, we distinguish between observed lifetime

distributions (taken from our measurements) and the proposed func-

tional form (which �ts the observed distribution over all but the

longest processes). Although the functional form has in�nite mean

and variance, the observed distributions (necessarily) have �nite mean

and variance.

� The performance of various migration strategies (and

other system features) depends strongly on the details

of the workload description. For example, two distribu-

tions that match with respect to both mean and vari-

ance might still produce signi�cantly di�erent results.

� The properties of an exponential distribution are very

di�erent from those of the distributions we observed.

For example, the distributions we observed all have a

tail of long-lived jobs (i.e., the distributions have high

variance). An exponential distribution with the same

mean would have lower variance; it lacks the tail of long-

lived jobs.

� Although the alternate functional form that we (and

[LO86]) propose cannot be used in queueing models

as easily as an exponential distribution, it nevertheless

lends itself to some forms of analysis, as we show in

Section 3.2.

In previous work, some simulations and analyses have

used a hyperexponential distribution of lifetimes (a hyper-

exponential distribution consists of two or more exponential

branches). The motivation for this model is that by us-

ing more than one exponential distribution, it is possible to

match an observed distribution more closely. In cases where

the hyperexponential distribution has enough branches to �t

the observed distribution well, as in [KL88], this model has

been successful.

The remainder of this section focuses on our distribution

measurements. We observed that long processes (with life-

times greater than 1 second) have a predictable and con-

sistent distribution. Section 2.1 describes this distribu-

tion. Section 2.2 makes some additional observations about

shorter processes.

2.1 Lifetime distribution when lifetime > 1s:

To determine the probability distribution function for UNIX

processes, we measured the lifetimes of over one million pro-

cesses, generated from a variety of academic workloads, in-

cluding instructional machines, research machines, and ma-

chines used for system administration. We obtained our data

using the UNIX command lastcomm, which outputs the CPU

time used by each completed process.

Figure 1 shows our process lifetime measurements on a

heavily-used instructional machine in mid-semester. The

plot shows only processes whose lifetimes exceed one second.

The dotted (heavy) line indicates the measured distribution;

the solid (thinner) line indicates the least squares curve �t.

The straight line in log-log space indicates that the process

lifetime distribution �ts the curve T

k

, where k is the slope

of the line.

For all the machines we studied, the process lifetime data

(for processes with age greater than one second) �t a curve

of the form T

k

, where k ranged from about �1:3 to �:8 for

di�erent machines. Table 1 shows the estimated lifetime dis-

tribution curve for each machine we studied. The parameters

were estimated by an iteratively weighted least squares �t

(with no intercept, in accordance with the functional model).

The standard error associated with each estimated parame-

ter gives a con�dence interval for that parameter (all of these

parameters are statistically signi�cant at a high degree of

certainty). Finally, the R

2

value indicates the goodness of
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Figure 2: In log-log space, this plot shows the distribution

of lifetimes for the � 13000 processes with lifetimes > 1 sec-

ond from our trace-driven simulation (see Section 5), and

two attempts to �t a curve to this data. One of the �ts is

based on the model proposed in this paper, T

k

. The other

�t is an exponential curve, c � e

��T

. Although the exponen-

tial curve is given the bene�t of an extra free parameter, it

fails to model the observed data. The proposed model �ts

well. Both �ts were performed by iteratively-weighted least

squares.

�t of the model | the values shown here indicate that the

�tted curve accounts for greater than 99% of the variation

of the observed values. Thus, the goodness of �t of these

models is very high.

Although the range of parameters we observed is fairly

broad, in the absence of measurements from a speci�c sys-

tem, assuming a distribution of 1=T is substantially more

accurate than assuming that process lifetimes are exponen-

tially distributed, as shown by Figure 2.

Table 2 shows the lifetime distribution function, the cor-

responding density function, and the conditional distribu-

tion function. We will refer to the conditional lifetime dis-

tribution often during our analysis of migration strategies.

The second column of Table 2 shows these functions when

k = �1, which we will assume for our analysis in Section 3.

2.2 Process lifetime distribution in general

For completeness we discuss the lifetime distribution for

processes with lifetimes less than one second. Since our

measurements were made using the lastcomm command the

shortest process we were able to measure was :01 seconds.

For processes between :01 and 1 second, we did not �nd

a consistent functional form, however for all machines we

studied these processes had an even lower hazard rate than

those of age > 1 second. That is, while the probability that

a process of age T > 1 second lives another T seconds is ap-

proximately 1=2, the probability that a process of age T < 1

second lives another T seconds is something greater than

1=2.

Process Lifetime Distribution for When

Processes of Age � 1 second k = �1

Pr fProc. lifetime > T sec j age > 1 secg = T

k

= 1=T

Pr fLifetime = T sec j age = 1 secg = �kT

k�1

= 1=T

2

Pr fLifetime > a sec j age = b > 1 secg =

�

a

b

�

k

=

b

a

Table 2: The cumulative distribution function, probability

density function, and conditional distribution function of

processes lifetimes. The second column shows the functional

form of each for the typical value k = �1:0.

3 Migration Policy

A migration policy is based on two decisions: when to mi-

grate processes and which processes to migrate. The focus

of this paper is the second question (we will touch on the

�rst question in Section 5.1):

Given that the load at a host is too high, how do

we choose which process to migrate?

Our heuristic is to choose the process that has highest prob-

ability of running longer than its migration time.

The motivation for this heuristic is twofold. From the

host's perspective, a large fraction of the migration time is

spent at the host (packaging the process). The host would

only choose to migrate processes that are likely to be more

expensive to run than to migrate. From the process' perspec-

tive, migration time has a large impact on response time. A

process would choose to migrate only if the migration over-

head could be amortized over a longer lifetime.

Most existing migration policies only migrate newborn

processes (no preemption), because these processes have no

allocated memory and thus their migration cost is less (see

Section 4).
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The problem with this policy is that, according

to the process lifetime distribution (Section 2), these new-

born processes are unlikely to live long enough to justify the

cost of remote execution.

Thus a \newborn" migration policy is only justi�ed if the

system has prior knowledge about the processes and can

selectively migrate only those processes likely to be CPU

hogs. However, the ability of the system to predict process

lifetimes by name is limited, as shown in Section 5.3.1.

Can we do better? The lifetime distribution points us

towards migrating older processes, since they have the high-

est probability of living long enough to justify the cost of

migration, but there are two potential problems with this

strategy: (1) since the vast majority of processes are short,

there might not be enough long-lived processes to have a

signi�cant load balancing e�ect, and (2) the additional cost

of migrating old processes (the memory transfer cost) might

overwhelm the bene�t of migrating longer-lived processes.

The following sections address these concerns. Section 3.2

also proposes a new preemptive migration strategy based on

the lifetime distribution.

4

The idea of migrating newborn processes might also stem from

the fallacy that process lifetimes have an exponential distribution,

implying that all processes have equal expected remaining lifetimes

regardless of their age.



3.1 Moving Enough Work

If only old processes are eligible for migration, and the ma-

jority of processes are short-lived, there might not be enough

old processes to produce a signi�cant load balancing e�ect.

In fact, although there are few old processes, they account

for a large part of the total CPU load. According to our

process lifetime measurements (Section 2), typically fewer

than 3:5% of processes live longer than 2 seconds, yet these

processes make up more than 60% of the total CPU load.

This is due to the long tail of the process lifetime distribution

(see Figure 2). [LO86] make a similar observation.

Furthermore, we will see that the ability to migrate even a

few large jobs can have a large e�ect on system performance,

since a single large job on a busy host imposes slowdowns

on many small processes.

3.2 Our Migration Policy

The obvious disadvantage of preemptive migration is the

need to transfer the memory associated with the migrant

process; thus, the migration cost for an active process is

much greater than the cost of remote execution. If preemp-

tive migration is done carelessly, this additional cost might

overwhelm the bene�t of migrating processes with longer

expected lives.

For this reason, we propose a strategy that guarantees

that every migration improves the expected performance of

the migrant process and the other processes at the source

host.

5

Whenever more than one process is running on a host and

one process migrates away, the expected slowdown of the

others decreases, regardless of the duration of the processes

or the cost of migration. But the slowdown of the migrant

process might increase, if the time spent migrating is greater

than the time saved by running on a less-loaded host. Thus

we will perform migration only if it improves the expected

slowdown of the migrant process.

If there is no process on the host that satis�es this crite-

rion, no migration is done. If migration costs are high, few

processes will be eligible for migration; in the extreme there

will be no migration at all. But in no case is the performance

of the system worse (in expectation) than the performance

without migration.

Using the distribution of process lifetimes, we now show

how to calculate the expected slowdown imposed on a mi-

grant process, and use this result to derive a minimum age

for migration based on the cost of migration. Denoting the

age of the migrant process by a; the cost of migration by c;

the (eventual total) lifetime of the migrant by L, the num-

ber of processes at the source host by n; and the number of

processes at the target host (including the migrant) by m,

we have:

5

Of course, processes on the target host are slowed by an arriving

migrant, but on a moderately-loaded system there are almost always

idle hosts; thus the number of processes at the target host is usually

zero. In any case, the number of processes at the target is always less

than the number at the source.

E fslowdown of migrantg

=

Z

1

t=a

Pr

�

Lifetime of

migrant is t

�

�E

�

Slowdown given

lifetime is t

�

dt

=

Z

1

t=a

Pr ft � L < t+ dtjL � ag �

na + c+m(t� a)

t

=

Z

1

t=a

a

t

2

�

na + c+m(t� a)

t

dt

=

1

2

�

c

a

+m+ n

�

If there are n processes at a heavily loaded host, then a

process should be eligible for migration only if its expected

slowdown after migration is less than n (which is the slow-

down it expects in the absence of migration).

Thus, we require

1

2

(

c

a

+m+ n) < n, which implies

Minimum migration age =

Migration cost

n�m

This analysis extends easily to the case of heterogeneous

processor speeds by applying a scale factor to n or m.

This analysis assumes that current load predicts future

load; that is, that the load at the source and target hosts will

be constant during the migration. In an attempt to evaluate

this assumption, and possibly improve it, we considered a

number of alternative load predictors, including (1) taking

a load average (over an interval of time), (2) summing the

ages of the running processes at the target host, and a (3)

calculating a prediction of survivors and future arrivals based

on the distribution model proposed here. We found that

current (instantaneous) load is the best single predictor, and

that using several predictive variables in combination did not

greatly improve the accuracy of prediction. These results are

in accord with Zhou's thesis, [Zho87] and with [Kun91].

The MOSIX migration policy [BSW93] is based on a re-

striction that is similar to the criterion we are proposing: the

age of the process must exceed the migration cost. Thus, the

slowdown imposed on the migrant process (due to migration)

must be less than 2.0. This bound is based on the worst case,

in which the migrant process completes immediately upon

arrival at the target.

The MOSIX requirement is likely to be too restrictive,

for two reasons. First, it ignores the slowdown that would

be imposed at the source host in the absence of migration

(presumably there is more than one process there, or the

system would not be attempting to migrate processes away).

Secondly, it is based on the worst-case slowdown rather than

(as shown above) the expected slowdown. We will explicitly

compare the MOSIX policy with ours in Section 5.4.

4 Model of migration costs

Since migration cost has such a large e�ect on the perfor-

mance of preemptive load balancing, this section presents

the model of migration costs we will use in our simulation

studies.



We model the cost of migrating an active process as the

sum of a �xed migration cost for migrating the process' sys-

tem state plus a memory transfer cost that is proportional

to the amount of the process' memory that must be trans-

ferred. We model remote execution cost as a �xed cost; it is

the same for all processes.

Throughout this paper, we refer to the following parame-

ters:

� r: the cost of remote execution, in seconds

� f : the �xed cost of preemptive migration, in seconds

� b: the memory transfer bandwidth, in MB's per second

� m: the memory size of migrant processes, in MB

and thus:

cost of remote execution = r

cost of preemptive migration = f +m=b

We refer to the quotient m=b as the memory transfer cost.

4.1 Memory transfer costs

The amount of a process' memory that must be transferred

during preemptive migration depends on properties of the

distributed system. [DO91] have an excellent discussion of

this issue, and we borrow from them here.

At the most, it might be necessary to transfer a process'

entire memory. On a system like Sprite, which integrates

virtual memory with a distributed �le system, it is only nec-

essary to write dirty pages to the �le system before migra-

tion. When the process is restarted at the target host, it

will retrieve these pages. In this case the cost of migration

is proportional to the size of the resident set rather than the

size of memory.

In systems that use precopying (such as the V [TLC85]

system), pages are transferred while the program continues

to run at the source host. When the job stops execution at

the source, it will have to transfer again any pages that have

become dirty during the precopy. Although the number of

pages transferred might be increased, the delay imposed on

the migrant process is greatly decreased.

Additional techniques can reduce the cost of transferring

memory even more ([Zay87]).

4.2 Migration costs in real systems

The speci�c parameters of migration cost depend not only

on the nature of the system (as discussed above) but also

on the speed of the network. In this section, we will present

reported values for parameters on a variety of real systems.

Later we will use a trace-driven simulator to evaluate the

e�ect of these parameters on system performance.

The cost of remote execution, r, on a typical UNIX work-

station connected to an Ethernet is 1 { 4 seconds. Systems

that use remote execution for load sharing have made an

e�ort to reduce this cost. On Sprite [DO91] r � :33 sec-

onds. Similarly for GLUNIX [VGA94], an operating system

designed for networks of workstations connected by an ATM

network, r = :25 { :5 seconds [Vah95]. The Utopia System

takes � 1:0 seconds to establish a connection between source

and target hosts, but once this is done, subsequent remote

executions can take as little as :1 seconds [ZWZD93].

Sprite was implemented on a network of SPARCstation 1

workstations connected by a 10Mb/second Ethernet. On

Sprite preemptive migrations took f = :33 seconds plus

1=b = 2:0 seconds per megabyte of memory transferred.

By implementing migration at the kernel level (on a clus-

ter of Pentium-90 and i486/DX66 workstations), MOSIX

reduces the �xed cost, f , to only 6 ms; the inverse mem-

ory transfer bandwidth, 1=b, is :44 seconds per megabyte

[Bra95].

The MIST system ([CCK

+

95]) is implemented on a net-

work of HP9000/720 workstations running HP-UX 9.03 and

connected by a 10Mb/second Ethernet. On this system, pre-

emptive migration takes f = :24 seconds plus 1=b = :99

seconds per megabyte of process memory.

5 Trace-driven Simulation

In this section we present the results of a trace-driven simula-

tion of process migration. We compare two migration strate-

gies: our proposed age-based preemptive migration strategy

(Section 3.2) and a non-preemptive strategy that migrates

newborn processes according to the process name (similar to

strategies proposed by [WZKL93] and [Sve90]). Although we

use a simple name-based strategy, we give it the bene�t of

several unfair advantages; for example, the name-lists are

derived from the same trace data used by the simulator.

Section 5.1 describes the simulator and the two strategies

in more detail. We use the simulator to run three experi-

ments. First, in Section 5.2, we evaluate the sensitivity of

each strategy to the parameters r, f , b, and m discussed

in Section 4. Next, in Section 5.3, we choose values for

these parameters that are representative of current systems

and compare the performance of the two strategies in detail.

Lastly, in Section 5.4, we evaluate the analytic criterion for

migration age (proposed in Section 3.2) used in our pre-

emptive migration strategy, compared to criteria used in the

literature.

5.1 The simulator

We have implemented a trace-driven simulation of a network

of six identical workstations.

6

We selected six daytime inter-

vals from the traces on machine po (see Section 2.1), each

from 9:00 a.m. to 5:00 p.m. From the six traces we ex-

tracted the start times and CPU durations of the processes.

We then simulate a network where each of six hosts executes

(concurrently with the others) the process arrivals from one

of the daytime traces.

Although the workloads on the six hosts are homogeneous

in terms of the job mix and distribution of lifetimes, there

is considerable variation in the level of activity during the

eight-hour trace. For most of the traces, every process arrival

�nds at least one idle host in the system, but in the two

busiest traces, a small fraction of processes (0:1%) arrive

to �nd all hosts busy. In order to evaluate the e�ect of

changes in system load, we divided the eight-hour trace into

eight one-hour intervals. We refer to these as runs 0 through

7, where the runs are sorted from lowest to highest load.

Run 0 has a total of � 15000 processes submitted to the six

simulated hosts; Run 7 has � 30000 processes. The average

6

The trace-driven simulator and the trace data are available at

http://http.cs.berkeley.edu/�harchol/loadbalancing.html.



duration of processes (for all runs) is � :4 seconds. Thus the

total utilization of the system, �, is between :27 and :54.

The birth process of jobs at our hosts is burstier than a

Poisson process. For a given run and a given host, the se-

rial correlation in the process interarrival times is typically

between .08 and .24, which is signi�cantly higher than one

would expect from a Poisson process (uncorrelated interar-

rival times yield a serial correlation of 0.0; perfect correlation

is 1.0).

Although the start times and durations of the processes

come from trace data, the memory size of each process,

which determines its migration cost, is chosen randomly

from a measured distribution (see Section 5.2). This sim-

pli�cation obliterates any correlations between memory size

and other process characteristics

7

, but it allows us to control

the mean memory size as a parameter and examine its e�ect

on system performance.

In our system model, we assume that processes are al-

ways ready to run (i.e. are never blocked on I/O). During a

given time interval, we divide CPU time equally among the

processes on the host.

In real systems, part of the migration time is spent on the

source host packaging the transferred pages, part in transit

in the network, and part on the target host unpacking the

data. The size of these parts and whether they can be over-

lapped depend on details of the system. In our simulation

we charge the entire cost of migration to the source host.

This simpli�cation is a pessimistic assumption for advocates

of preemptive migration.

5.1.1 Strategies

We compare a non-preemptive migration strategy with our

proposed preemptive migration strategy (from Section 3.2).

For purposes of comparison, we have tried to make the poli-

cies as simple and as similar as possible. For both types of

migration, we consider performing a migration only when

a new process is born, even though a preemptive strategy

might bene�t by initiating migrations at other times. Also,

for both strategies, a host is considered heavily-loaded any

time it contains more than one process; in other words, any

time it would be sensible to consider migration. Finally, we

use the same location policy in both cases: the host with the

lowest instantaneous load is chosen as the target host (ties

are broken by random selection).

Thus the only di�erence between the two migration poli-

cies is which processes are considered eligible for migration:

name-based non-preemptive migration A process is

eligible for migration only if its name is on a list of pro-

cesses that tend to be long-lived. If an eligible process

is born at a heavily-loaded host, the process is executed

remotely on the target host. Processes cannot be mi-

grated once they have begun execution.

The performance of this strategy depends on the list

of eligible process names. We derived this list by sort-

ing the processes from the traces according to name

and duration and selecting the 15 common names with

the longest mean durations. We chose a threshold on

mean duration that is empirically optimal (for this set of

7

In our informal study of processes in our department, we did not

detect any correlations between memory size and process CPU usage.

[KL88] make the same observation in their department.

runs). Adding more names to the list detracts from the

performance of the system, as it allows more short-lived

processes to be migrated. Removing names from the list

detracts from performance as it becomes impossible to

migrate enough processes to balance the load e�ectively.

Since we used the trace data itself to construct the list,

our results may overestimate the performance bene�ts

of this strategy.

age-based preemptive migration A process is eligible

for migration only if it has aged for some fraction of its

migration cost. Based on the derivation in Section 3.2,

this fraction is

1

n�m

, where n (respectively m) is the

number of processes at the source (target) host. When

a new process is born at a heavily-loaded host, all pro-

cesses that satisfy the migration criterion are migrated

away.

This strategy understates the performance bene�ts of

preemptive migration, because it does not allow the sys-

tem to initiate migrations except when a new process ar-

rives. We have modeled strategies that allow migration

at other times, and they do improve the performance

of the preemptive strategy, but we have omitted them

here to facilitate comparison between the two migration

strategies.

As described in Section 3.2, we also modeled other loca-

tion policies based on more complicated predictors of future

loads, but none of these predictors yielded signi�cantly bet-

ter performance than the instantaneous load we use here.

5.1.2 Metrics

We evaluate the e�ectiveness of each strategy according to

the following performance metrics:

mean slowdown Slowdown is the ratio of wall-clock execu-

tion time to CPU time (thus, it is always greater than

one). The average slowdown of all jobs is a common

metric of system performance. When we compute the

ratio of mean slowdowns (as from di�erent strategies)

we will use normalized slowdown, which is the ratio of

inactive time (the excess slowdown caused by queueing

and migration delays) to CPU time. For example, if the

(unnormalized) mean slowdown drops from 2:0 to 1:5,

the ratio of normalized mean slowdowns is :5=1:0 = :5 :

a 50% reduction in delay.

Mean slowdown alone, however, is not a su�cient mea-

sure of the di�erence in performance of the two strategies;

it understates the advantages of the preemptive strategy for

these two reasons:

1. Skewed distribution of slowdowns: Even in the absence

of migration, the majority of processes su�er small slow-

downs (typically 80% are less than 3.0. See Figure 3).

The value of the mean slowdown will be dominated by

this majority.

2. User perception: From the user's point of view, the im-

portant processes are the ones in the tail of the distri-

bution, because although they are the minority, they

cause the most noticeable and annoying delays. Elim-

inating these delays might have a small e�ect on the

mean slowdown, but a large e�ect on a user's percep-

tion of performance.
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Figure 3: Distribution of process slowdowns for run 0 (with

no migration). Most processes su�er small slowdowns, but

the processes in the tail of the distribution are more notice-

able and annoying to users.

Therefore, we will also consider the following two metrics:

variance of slowdown : This metric is often cited as

a measure of the unpredictability of response time

[SPG94], which is a nuisance for users trying to sched-

ule tasks. In light of the distribution of slowdowns,

however, it may be more meaningful to interpret this

metric as a measure of the length of the tail of the dis-

tribution; i.e. the number of jobs that experience long

delays.

number of severely slowed processes : In order to

quantify the number of noticeable delays explicitly, we

consider the number (or percentage) of processes that

are severely impacted by queueing and migration penal-

ties.

5.2 Sensitivity to migration costs

In this section we compare the performance of the non-

preemptive and preemptive strategies over a range of values

of r, f , b and m (the migration cost parameters de�ned in

Section 4).

For the following experiments, we chose the remote exe-

cution cost r = :3 seconds. We considered a range for the

�xed migration cost of :1 < f < 10 seconds.

The memory transfer cost is the quotient of m (the mem-

ory size of the migrant process) and b (the bandwidth of the

network). We chose the memory transfer cost from a dis-

tribution with the same shape as the distribution of process

lifetimes, setting the mean memory transfer cost (MMTC)

to a range of values from 1 to 64.

The shape of the memory transfer cost distribution is

based on an informal study of memory-use patterns on the

same machines from which we collected trace data. The im-

portant feature of this distribution is that there are many

jobs with small memory demands and a few jobs with very

large memory demands. The exact form of this distribution

does not a�ect the performance of either migration strat-

egy strongly, but of course the mean (MMTC) does have a

strong e�ect.

Figures 4a and 4b are contour plots of the ratio of the per-

formance of the two migration strategies using normalized

slowdown. Speci�cally, for each of the eight one-hour runs

we calculate the mean (respectively standard deviation) of

the slowdown imposed on all processes that complete during

the hour. For each run, we then take the ratio of the means

(standard deviations) of the two strategies. Lastly we take

the geometric mean [HP90] of the eight ratios.

The two axes in Figure 4 represent the two components

of the cost of preemptive migration, namely the �xed cost

(f) and the MMTC (m=b). As mentioned above, the cost

of non-preemptive migration (r) is �xed at :3 seconds. As

expected, increasing either the �xed cost of migration or the

MMTC hurts the performance of preemptive migration. The

contour line marked 1:0 indicates the crossover where the

performance of preemptive and non-preemptive migration is

equal (the ratio is 1:0). For smaller values of the cost param-

eters, preemptive migration performs better; for example, if

the �xed migration cost is .33 seconds and the MMTC is

2 seconds, the normalized mean slowdown with preemptive

migration is � 40% lower than with non-preemptive migra-

tion. When the �xed cost of migration or the MMTC are

very high, almost all processes are ineligible for preemptive

migration; thus, the preemptive strategy does almost no mi-

grations. The non-preemptive strategy is una�ected by these

costs so the non-preemptive strategy can be more e�ective.

Figure 4b shows the e�ect of migration costs on the stan-

dard deviation of slowdowns. The crossover point | where

non-preemptive migration surpasses preemptive migration

| is considerably higher in Figure 4b than in Figure 4a.

Thus there is a region where preemptive migration yields a

higher mean slowdown than non-preemptive migration, but

a lower standard deviation. The reason for this is that non-

preemptive migration occasionally chooses a process for re-

mote execution that turns out to be short-lived. These pro-

cesses su�er large delays (relative to their run times) and

add to the tail of the distribution of slowdowns. In the next

section, we show cases in which the standard deviation of

slowdowns is actually worse with non-preemptive migration

than with no migration at all (three of the eight runs).

5.3 Comparison of preemptive and non-preemptive strate-

gies

In this section we choose migration cost parameters repre-

sentative of current systems (see Section 4.2) and use them

to examine more closely the performance of the two migra-

tion strategies. The values we chose are:

� r: the cost of remote execution, .3 seconds

� f : the �xed cost of preemptive migration, .3 seconds

� b: the memory transfer bandwidth, .5 MB per second

� m: the mean memory size of migrant processes, 1 MB

In Figures 4a and 4b, the point corresponding to these

parameter values is marked with an \X". Figure 5 shows the

performance of the two migration strategies at this point

(compared to the base case of no migration).

Non-preemptive migration reduces the normalized mean

slowdown (Figure 5a) by less than 20% for most runs (and

� 40% for the two runs with the highest loads). Preemptive

migration reduces the normalized mean slowdown by 50%

for most runs (and more than 60% for two of the runs). The

performance improvement of preemptive migration over non-

preemptive migration is typically between 35% and 50%.
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Figure 4: (a) The performance of preemptive migration relative to non-preemptive migration deteriorates as the cost of

preemptive migration increases. The two axes are the two components of the preemptive migration cost. The cost of non-

preemptive migration is held �xed. The \X" marks the particular set of parameters we will consider in the next section. (b)

The standard deviation of slowdown may give a better indication of a user's perception of system performance than mean

slowdown. By this metric, the bene�t of preemptive migration is even more signi�cant.

As discussed above, we feel that the mean slowdown (nor-

malized or not) understates the performance bene�ts of pre-

emptive migration. We have proposed other metrics to try

to quantify these bene�ts. Figure 5b shows the standard de-

viation of slowdowns, which re
ects the number of severely

impacted processes. Figures 5c and 5d explicitly measure

the number of severely impacted processes, according to two

di�erent thresholds of acceptable slowdown. By these met-

rics, the bene�ts of migration in general appear greater, and

the discrepancy between preemptive and non-preemptive mi-

gration appears much greater. For example in Figure 5d, in

the absence of migration, 7�18% of processes are slowed by

a factor of 5 or more. Non-preemptive migration is able to

eliminate 42 � 62% of these, which is a signi�cant bene�t,

but preemptive migration consistently eliminates nearly all

(86 � 97%) severe delays.

An important observation from Figure 5b is that for sev-

eral runs, non-preemptive migration actually makes the per-

formance of the system worse than if there were no migration

at all. For the preemptive migration strategy, this outcome

is nearly impossible, since migrations are only performed if

they improve the slowdowns of all processes involved (in ex-

pectation). In the worst case, then, the preemptive strategy

will do no worse than the case of no migration (in expecta-

tion).

Another bene�t of preemptive migration is graceful degra-

dation of system performance as load increases (as shown in

Figure 5). In the presence of preemptive migration, both

the mean and standard deviation of slowdown are nearly

constant, regardless of the overall load on the system.

5.3.1 Shortcomings of Non-preemptive Migration

The alternate metrics discussed above shed some light on the

reasons for the performance di�erence between preemptive

and non-preemptive migration. We consider two kinds of

mistakes that are possible for either migration strategy:

Migrating short-lived jobs : This type of error imposes

large slowdowns on the migrated process, wastes net-

work resources, and fails to e�ect signi�cant load bal-

ancing. Under non-preemptive migration, this error oc-

curs when a process whose name is on the eligible list

turns out to be short-lived. Our preemptive migration

strategy eliminates this type of error by guaranteeing

that the performance of a migrant improves in expecta-

tion.

Failing to migrate long-lived jobs : This type of error

imposes moderate slowdowns on a potential migrant,

and, more importantly, in
icts delays on short jobs that

are forced to share a processor with a CPU hog.

Under non-preemptive migration, this error occurs

whenever a long-lived process is not on the name-list,

possibly because it is an unknown program or an un-

usually long execution of a typically brief program. Pre-

emptive migration can correct these errors by migrating

long jobs later in their lives.

Even occasional mistakes of the second kind can have a

large impact on performance, because one long job on a busy

machine will impede many small jobs. This e�ect is aggra-

vated by the serial correlation between arrival times (see

Section 5.1), which suggests that a busy host is likely to

receive many future arrivals.

In our simulations the second type of error was more signif-

icant: most severely-slowed jobs su�ered because they were

forced to run on a heavily-loaded host, not because they suf-

fered migration delays. Speci�cally, under non-preemptive

migration almost all (99:2%) processes that su�ered slow-

downs greater than 3:0 were short processes (< 1 second)

that never migrated; their slowdowns were caused by run-

ning on a busy host.
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Figure 5: (a) Mean slowdown. (b) Standard deviation of

slowdown. (c) Percentage of processes slowed by a factor of

3 or more. (d) Percentage of processes slowed by a factor of

5 or more. All shown at cost point X from Figure 4.

Preemptive migration is able to help some of these pro-

cesses by performing more | and more e�ective | migra-

tions, but still 96% of severe slowdowns are due to high loads,

not migration delays. This suggests that there are additional

performance bene�ts to be gained from improving load bal-

ance, even at the cost of additional migration.

The primary reason for the success of preemptive migra-

tion is its ability to identify long jobs accurately and to

migrate those jobs away from busy hosts. In our simula-

tions, the average lifetime of migrant processes under non-

preemptive migration was between 1.5 and 2.1 seconds (the

mean lifetime for all processes is 0:4 seconds). Our preemp-

tive migration policy was better able to identify long jobs;

the average age of migrant processes was between 4.1 and

5.7 seconds.

There is, however, one type of migration error that is

more problematic for preemptive migration than for non-

preemptive migration: stale load information. A target host

may have a low load when a migration is initiated, but its

load may have increased by the time the migrant arrives.

This is more likely for a preemptive migration because the

migration time is longer. In our simulations, we found that

these errors do occur, although infrequently enough that

they do not have a severe impact on performance.

Speci�cally, we counted the number migrant processes

that arrived at a target host and found that the load was

higher than it had been at the source host when migration

began. For most runs, this occurred less than 0:5% of the

time (for two runs with high loads it was 0:7%). Some-

what more often, � 3% of the time, a migrant process ar-

rived at a target host and found that the load at the target

was greater than the current load at the source. These re-

sults suggest that the performance of a preemptive migration

strategy might be improved by rechecking loads at the end

of a memory transfer and, if the load at the target is too

high, aborting the migration and restarting the process on

the source host.

One other potential problem with preemptive migration is

the volume of network tra�c that results from large mem-

ory transfers. In our simulations, we did not model network

congestion, on the assumption that the tra�c generated by

migration would not be excessive. This assumption seems

to be reasonable: under our preemptive migration strategy

fewer than 4% of processes are migrated once and fewer than

:25% of processes are migrated more than once. Further-

more, there is seldom more than one migration in progress

at a time.

In summary, the advantage of preemptive migration |

its ability to identify long jobs and move them away from

busy hosts | overcomes its disadvantages (longer migration

times and stale load information).

5.4 Evaluation of analytic migration criterion

As derived in Section 3.2, the minimum age for a migrant

process according to the analytic criterion is

Minimum

migration age

=

Migration cost

(n �m)

where n is the load at the source host and m is the load at

the target host (including the potential migrant).

In order to evaluate the performance of this criterion, we

will compare it with the �xed parameter criterion:



Mean slowdown

1.0

1.5

2.0

2.5

(0.3) (0.5) (0.5) (0.3) (0.3) (0.5) (0.8) (0.9)

best fixed parametric min. age
analytic minimum age

0 1 2 3 4 5 6 7

Figure 6: The mean slowdown for eight runs, using the two

criteria for minimum migration age. The value of the best

�xed parameter � is shown in parentheses for each run.

Minimum

migration age

= � �Migration cost

where � is a free parameter. For comparison, we will use

the best �xed parameter, which is, for each run, the best

parameter for that run, chosen empirically by excuting the

run with a range of parameter values (of course, this gives

the �xed parameter criterion a considerable advantage).

As discussed in Section 3.2, MOSIX uses the parameter

� = 1:0, based on a worst-case analysis of the slowdown

imposed on the migrant. Although this age threshold o�ers

a strict limit on the slowdown seen by a migrant process, it

imposes greater slowdowns on the processes that would have

bene�ted if a younger process were allowed to migrate away.

A previous simulation study [KL88] chose a lower value for

this parameter (� = 0:1), but did not explain how it was

chosen.

Figure 6 compares the performance of the analytic mini-

mum age criterion with the best �xed parameter (�). The

best �xed parameter varies considerably from run to run,

and appears to be roughly correlated with the average load

during the run (the runs are sorted in increasing order of

total load).

The performance of the analytic criterion is always within

a few percent of (and sometimes better than) the perfor-

mance of the best �xed value criterion. The advantage of

the analytic criterion is that it is parameterless, and there-

fore more robust across a variety of workloads. We feel that

the elimination of one free parameter is a useful result in an

area with so many (usually hand-tuned) parameters.

6 Weaknesses of the model

Our simulation ignores a number of factors that would a�ect

the performance of migration in real systems:

environment : Our migration strategy takes advantage

of the used-better-than-new property of process life-

times. In an enviroment with a di�erent distribution,

this strategy will not be e�ective. We are currently ex-

amining the distribution of lifetimes on a Cray C90 at

the San Diego Supercomputer Center.

I/O : Our model considers all jobs CPU-bound; thus, their

response time necessarily improves if they run on a less-

loaded host. For I/O bound jobs, however, CPU con-

tention has little e�ect on response time. These jobs

would bene�t less from migration.

dependencies : Our model of migration cost considers only

the cost of transferring a process, and not the additional

costs imposed by future interaction and other I/O. For

some jobs, these additional costs might be signi�cant.

To see how large a role this plays, we noted the names of

the processes that appear most frequently in our traces

(with CPU time greater than 1 second, since these are

the processes most likely to be migrated). The most

common names were \cc1plus" and \cc1," both of which

are CPU bound. Next most frequent were: trn, cpp, ld,

jove (a version of emacs), and ps. So although some

jobs in our traces are in reality interactive, our simple

model is reasonable for many of the most common jobs.

memory size : One weakness of our model is that we

choose memory sizes from a measured distribution and

therfore our model ignores any correlation between

memory size and other process characteristics. This

choice however allows us to control the mean memory

size as a parameter and examine its e�ect on system

performance. In this paper we've made the pessimistic

simpli�cation that a migrant's entire memory must be

transferred, although this is not always the case.

network contention : Our model does not consider the

e�ect of increased network tra�c as a result of process

migration. We observe, however, that for the load lev-

els we simulated, migrations are occasional (one every

few seconds), and that there is seldom more than one

migration in progress at a time.

7 Conclusions

� Migrating a long job away from a busy host helps not

only the long job, but also the many short jobs that are

expected to arrive at the host in the future. A busy

host is expected to receive many arrivals because of the

serial correlation (\burstiness") of the arrival process.

� Preemptive migration outperforms non-preemptive mi-

gration even when memory-transfer costs are high,

for the following reason: non-preemptive name-based

strategies choose processes for migration that are ex-

pected to have long lives. If this prediction is wrong,

and a process runs longer than expected, it cannot be

migrated away, and many subsequent small processes

will be delayed. A preemptive strategy is able to make

a more accurate prediction about the duration of a pro-

cess (based on the its age) and, more importantly, if

the prediction is wrong, it can recover by migrating the

process later.

� Using the functional form of the distribution of process

lifetimes, we have derived a criterion for the minimum

time a process must age before being migrated. This

criterion is parameterless and robust across a range of

loads.

� Exclusive use of mean slowdown as a metric of system

performance understates the bene�ts of load balancing



as perceived by users, and especially understates the

bene�ts of preemptive load balancing.

� Although preemptive migration is di�cult to imple-

ment, several systems have chosen to implement it for

reasons other than load balancing. Our results suggest

these systems would bene�t from preemptive load bal-

ancing.

8 Acknowledgements

We'd like to thank Tom Anderson and the members of the

NOW group for comments and suggestions on our experi-

mental setup, as well as on the preparation of this paper.

We are also greatly indebted to the anonymous reviewers

from SIGMETRICS and SOSP, and to John Zahorjan, whose

comments greatly improved the quality of this paper.

References

[AE87] Rakesh Agrawal and Ahmed Ezzet. Location inde-

pendent remote execution in NEST. IEEE Transac-

tions on Software Engineering, 13(8):905{912, Au-

gust 1987.

[AF89] Y. Artsy and R. Finkel. Designing a process migration

facility: The Charlotte experience. IEEE Computer,

pages 47{56, September 1989.

[BF81] Raymond M. Bryant and Raphael A. Finkel. A sta-

ble distributed scheduling algorithm. In 2nd Inter-

national Conference on Distributed Computing Sys-

tems, pages 314{323, 1981.

[BK90] Flavio Bonomi and Anurag Kumar. Adaptive optimal

load balancing in a nonhomogeneous multiserver sys-

tem with a central job scheduler. IEEE Transactions

on Computers, 39(10):1232{1250, October 1990.

[Bra95] Avner Braverman, 1995. Personal Communication.

[BSW93] Amnon Barak, Guday Shai, and Richard G. Wheeler.

The MOSIX Distributed Operating System:Load

Balancing for UNIX. Springer Verlag, Berlin, 1993.

[CCK

+

95] Jeremy Casas, Dan L. Clark, Ravi Konuru, Steve W.

Otto, Robert M. Prouty, and Jonathan Walpole.

Mpvm: A migration transparent version of pvm.

Computing Systems, 8(2):171{216, Spring 1995.

[CK87] Thomas L. Casavant and Jon G. Kuhl. Analysis of

three dynamic distributed load-balancing strategies

with varying global information requirements. In 7th

International Conference on Distributed Computing

Systems, pages 185{192, September 1987.

[DHB95] Allen B. Downey and Mor Harchol-Balter. A note on

\The limited performance bene�ts of migrating ac-

tive processes for load sharing". Technical Report

UCB//CSD-95-888, University of California, Berke-

ley, November 1995.

[DO91] Fred Douglis and John Ousterhout. Transparent pro-

cess migration: Design alternatives and the sprite im-

plementation. Software { Practice and Experience,

21(8):757{785, August 1991.

[EB93] D. J. Evans and W. U. N. Butt. Dynamic load balanc-

ing using task-transfer probablilites. Parallel Com-

puting, 19:897{916, August 1993.

[ELZ86] Derek L. Eager, Edward D. Lazowska, and John Za-

horjan. Adaptive load sharing in homogeneous dis-

tributed systems. IEEE Transactions on Software

Engineering, 12(5):662{675, May 1986.

[ELZ88] Derek L. Eager, Edward D. Lazowska, and John Za-

horjan. The limited performance bene�ts of migrating

active processes for load sharing. In SIGMETRICS,

pages 662{675, May 1988.

[GGI

+

91] G.W. Gerrity, A. Goscinski, J. Indulska, W. Toomey,

and W. Zhu. RHODOS{a testbed for studying de-

sign issues in distributed operating systems. In To-

wards Network Globalization (SICON 91): 2nd In-

ternational Conference on Networks, pages 268{274,

September 1991.

[HJ90] Anna Ha�c and Xiaowei Jin. Dynamic load balancing

in a distributed system using a sender-initiated algo-

rithm. Journal of Systems Software, 11:79{94, 1990.

[HP90] John L. Hennessy and David A. Patterson. Com-

puter Architecture A Quantitative Approach. Mor-

gan Kaufmann Publishers, San Mateo, CA, 1990.

[KL88] Phillip Krueger and Miron Livny. A comparison of

preemptive and non-preemptive load distributing. In

8th International Conference on Distributed Com-

puting Systems, pages 123{130, June 1988.

[Kun91] Thomas Kunz. The in
uence of di�erent workload de-

scriptions on a heuristic load balancing scheme. IEEE

Transactions on Software Engineering, 17(7):725{

730, July 1991.

[LL90] M. Litzkow and M. Livny. Experience with the Con-

dor distributed batch system. In IEEE Workshop

on Experimental Distributed Systems, pages 97{101,

1990.

[LLM88] M.J. Litzkow, M. Livny, and M.W. Mutka. Con-

dor - a hunter of idle workstations. In 8th Inter-

national Conference on Distributed Computing Sys-

tems, June 1988.

[LM82] Miron Livny and Myron Melman. Load balancing in

homogeneous broadcast distributed systems. In ACM

Computer Network Performance Symposium, pages

47{55, April 1982.

[LO86] W. E. Leland and T. J. Ott. Load-balancing heuristics

and process behavior. In Proceedings of Performance

and ACM Sigmetrics, volume 14, pages 54{69, 1986.

[LR93] Hwa-Chun Lin and C.S. Raghavendra. A state-

aggregation method for analyzing dynamic load-

balancing policies. In IEEE 13th International Con-

ference on Distributed Computing Systems, pages

482{489, May 1993.

[Mil93] Dejan S. Milojicic. Load Distribution: Implementa-

tion for the Mach Microkernel. PhD Dissertation,

University of Kaiserslautern, 1993.

[MTS90] Ravi Mirchandaney, Don Towsley, and John A.

Stankovic. Adaptive load sharing in heterogeneous

distributed systems. Journal of Parallel and Dis-

tributed Computing, 9:331{346, 1990.

[Nut94] Mark Nuttall. Survey of systems providing process or

object migration. Technical Report DoC94/10, Impe-

rial College Research Report, 1994.

[PM83] M.L. Powell and B.P. Miller. Process migrations in

DEMOS/MP. In ACM-SIGOPS 6th ACM Sympo-

sium on Operating Systems Principles, pages 110{

119, November 1983.

[PTS88] Spiridon Pulidas, Don Towsley, and John A.

Stankovic. Imbedding gradient estimators in load bal-

ancing algorithms. In 8th International Conference

on Distributed Computing Systems, pages 482{490,

June 1988.

[Rom91] C. Gary Rommel. The probability of load balancing

success in a homogeneous network. IEEE Transac-

tions on Software Engineering, 17:922{933, 1991.

[Ros65] Robert F. Rosin. Determining a computing center en-

vironment. Communications of the ACM, 8(7), 1965.

[SPG94] A. Silberschatz, J.L. Peterson, and P.B. Galvin. Op-

erating System Concepts, 4th Edition. Addison-

Wesley, Reading, MA, 1994.

[Sve90] Anders Svensson. History, an intelligent load shar-

ing �lter. In IEEE 10th International Conference

on Distributed Computing Systems, pages 546{553,

1990.



[Thi91] G. Thiel. Locus operating system, a transparent

system. Computer Communications, 14(6):336{346,

1991.

[TLC85] Marvin M. Theimer, Keith A. Lantz, and David R

Cheriton. Preemptable remote execution facilities for

the V-System. In ACM-SIGOPS 10th ACM Sympo-

sium on Operating Systems Principles, pages 2{12,

December 1985.

[TvRaHvSS90] A.S. Tanenbaum, R. van Renesse adn H. van

Staveren, and G.J. Sharp. Experiences with the

Amoeba distributed operating system. Communica-

tions of the ACM, pages 336{346, December 1990.

[Vah95] Amin Vahdat, 1995. Personal Communication.

[VGA94] Amin M. Vahdat, Douglas P. Ghormley, and

Thomas E. Anderson. E�cient, portable, and robust

extension of operating system functionality. Technical

Report UCB//CSD-94-842, University of California,

Berkeley, 1994.

[WM85] Yung-Terng Wang and Robert J.T. Morris. Load shar-

ing in distributed systems. IEEE Transactions on

Computers, c-94(3):204{217, March 1985.

[WZKL93] J. Wang, S. Zhou, K.Ahmed, and W. Long. LS-

BATCH: A distributed load sharing batch system.

Technical Report CSRI-286, Computer Systems Re-

search Institute, University of Toronto, April 1993.

[Zay87] E. R. Zayas. Attacking the process migration bottle-

neck. In ACM-SIGOPS 11th ACM Symposium on

Operating Systems Principles, pages 13{24, 1987.

[Zho87] Songnian Zhou. Performance studies for dynamic

load balancing in distributed systems. PhD Disserta-

tion, University of California, Berkeley, 1987.

[ZWZD93] S. Zhou, J. Wang, X. Zheng, and P. Delisle. Utopia:

a load-sharing facitlity for large heterogeneous dis-

tributed computing systems. Software { Practice and

Expeience, 23(2):1305{1336, December 1993.


