Priority Mechanismsfor OLTP and Transactional Web Applications

David T. McWherter Bianca Schroeder

AnastassiaAilamaki* Mor Harchol-Baltert

Carnegie Mellon University, Dept. of Computer Science

Abstract

Transactional workloads are a hallmark of modern OLTP
and Web applications, ranging from electronic commerce
and banking to online shopping. Often, the database at
the core of these applications is the performance bot-
tleneck. Given the limited resources available to the
database, transaction execution times can vary wildly as
they compete and wait for critical resources. As the com-
petitor is “only a click away,” valuable (high-priority)
users must be ensured consistently good performance via
QoS and transaction prioritization.

This paper analyzes and proposes prioritization for
transactional workloads in conventional DBMS. This
work first conducts a detailed bottleneck analysis of re-
source usage by transactional workloads on commercial
and noncommercial database systems (IBM DB2, Post-
greSQL, Shore) under a variety of configurations. Our
first contribution is a demonstration that for TPC-C work-
loads, under all of the above DBMS, transaction execu-
tion times are dominated by time spent waiting on locks,
whereas for TPC-W workloads, CPU largely dominates
transaction execution times. The second component of
this work is an implementation and evaluation of several
preemptive and non-preemptive prioritization algorithms
in PostgreSQL and Shore. The primary contribution is a
demonstration that transaction prioritization can provide
3x improvement for high-priority transactions in general-
purpose DBMS. Furthermore, despite evaluating a wide-
range of scheduling algorithms, we find that particularly
simple scheduling policies are most effective in improving
high-priority without significantly penalizing low-priority
transactions.

1 Introduction

Online transaction processing (OLTP) is a mainstay in
modern commerce, banking, and Internet applications,
and is found increasingly in other applications such as
software fault tracking [7] and discussion boards [20].

*This work was supported by NSF grants 11S-0133686 and CCR-
0205544 and by IBM.

T This work was supported by NSF Career Grant CCR-0133077, NSF
ITR Grant 99-167, and by IBM, Cisco Systems, and Seagate Technol-
gies via a grant from the Pittsburgh Digital Greenhouse.

Access to dynamic web content can often be orders of
magnitude slower than static content due to the dominat-
ing cost of database activity. Even worse, given the lim-
ited resources of the DBMS, transactions are even more
costly during periods of high load, because requests spend
more time waiting for critical resources. Since the com-
petitor is “only a click away,” the user must be kept satis-
fied with fast access times.

To alleviate the problem of costly database accesses, it
can be extremely valuable to assign priorities to users and
provide differing levels of performance. When both high-
and low-priority clients share the database system, high-
priority clients should complete more quickly on average
than their low-priority counterparts. For example, an on-
line merchant may make use of priorities to provide better
performance to new prospective clients, or to big spenders
expected to generate large profits. Alternatively, a web
journal may provide improved responsiveness to “gold-
customers” who pay higher subscription costs. Finally,
point-of-sales systems could also run long-running main-
tenance queries “in the background” at low-priority while
customer purchases execute quickly at high-priority.

The goal of this research is to provide prioritization
and differentiated performance classes within a conven-
tional (general-purpose) relational database system run-
ning OLTP and transactional web workloads, including
read/write transactions. This paper provides a detailed
resource utilization breakdown for OLTP workloads exe-
cuting on a range of database platforms including IBM
DB2[14], Shore[16], and PostgreSQL[17]. IBM DB2
and PostgreSQL are both widely used (commercial and
noncommercial) database systems. Shore is chosen as a
research prototype open-source system which represents
the major concurrency control approach used in DB2.
DB2 and Shore use traditional hierarchical locking and
PostgreSQL (as Oracle) uses multiversion concurrency
control (MVCC) [6]. The paper also implements several
transaction prioritization algorithms within the Shore and
PostgreSQL DBMS. The prioritization schemes studied
include non-preemptive priorities, non-preemptive prior-
ities with priority inheritance, and various schemes for
preemptive priorities. Given the focus on web and com-
plex transactional applications, we use the benchmark
OLTP workloads TPC-C and TPC-W.

The contributions of this research are:

1. Identification of the bottleneck resource under vari-
ous workloads and databases. This bottleneck varies
across different databases, workloads, and loads
(Section 4).

2. A demonstration that transaction prioritization can
provide 3x improvement for high-priority requests
in general-purpose DBMS (Section 5).

2 Prior Work

There is a wide range of well-known database research,
including that of Abbott, Garcia-Molina, Stankovic, and
others, which studies different transaction scheduling
policies, evaluating the effectiveness of each. Most ex-
isting implementation work is in the domain of real-time
database systems (RTDBMS), where the goal is not im-
provement of mean execution times for classes of trans-
actions, but rather meeting deadlines associated with each
transaction. These RTDBMS are sufficiently different
from the general-purpose DBMS studied in this paper to
warrant investigation as to whether results for RTDBMS
apply to general-purpose DBMS as well. In addition to
the existing implementation work in RTDBMS, there has
also been work on simulation and analytical modeling of
prioritization in DBMS and RTDBMS. Unfortunately, the
simulation and analytical approaches have difficulty in
capturing the complex interactions of CPU, 1/0, and other
resources in the database system.

In Section 2.1 we summarize the most relevant existing
research on implementation of RTDBMS. In Section 2.2
we summarize the existing and ongoing work on prioriti-
zation in general-purpose DBMS.

2.1 Real-Time Databases

Real-time database systems (RTDBMS) have taken cen-
ter stage in the field of database transaction scheduling for
the past decade. These systems are useful for numerous
important applications with intrinsic timing constraints,
such as multimedia (e.g., video-streaming), and indus-
trial control systems. RTDBMS manage transactional
timing constraints and time-based semantics in ways that
general-purpose DBMS cannot [21].

RTDBMS differ from conventional DBMS with prior-
ities. In RTDBMS, each transaction is associated with
time-dependent constraints, e.g., a deadline, which must
be honored to maintain transactional semantics. The
goal, minimizing the number of missed constraints (dead-
lines), requires maintaining time-cognizant protocols and
various specialized data structures [21], unlike general-
purpose DBMS. Scheduling issues such as priority inver-
sion may have different costs for RTDBMS as compared
with conventional DBMS: i.e., a single priority inversion
may cause a missed deadline while hardly affecting over-

all mean execution time. Lastly RTDBMS workloads can
differ substantially from conventional DBMS workloads.

Abbott and Garcia-Molina [2, 1, 3, 4, 5] extensively
study scheduling RTDBMS transactions in simulation.
They concentrate on scheduling the critical resources
(CPU, locks and 1/0) to meet real-time deadlines. Within
these critical resources they investigate several preemp-
tive and non-preemptive scheduling policies. On the
question of which resource needs to be scheduled, Abbot
and Garcia-Molina conclude that CPU scheduling is most
important, as transactions only acquire resources when
they have the CPU [2]. They find scheduling concurrency
control resources can also improve performance.

With respect to scheduling algorithms, both Abbott and
Garcia-Molina[2] and Huang et al. [12] address prior-
ity inheritance and preemptive prioritization in RTDBMS.
Both papers study similar systems, using two-phase lock-
ing protocols, and propose to solve the priority-inversion
problem. Abbott and Garcia-Molina find that priority in-
heritance is important when ensuring that deadlines are
met, in particular when the database is small. In contrast,
Huang et. al. find that standard priority inheritance is not
very effective in RTDBMS.

Kang et al. [13] differentiate between classes of real-
time transactions, providing different classes with QOS
guarantees on the rate of missed deadlines and data fresh-
ness. They focus on main memory databases.

The results in this paper will differ from those above
as follows: (i) We do not find that CPU is the uniquely
important resource to schedule. In fact for DBMS with
traditional locking and TPC-C workload we see that
scheduling the lock queues is far more effective than CPU
scheduling. (ii) We do not find that priority inheritance is
necessarily helpful. For certain workloads and DBMS it
appears ineffective. We attribute these differences in re-
sults to the many differences between real-time and con-
ventional database systems and workloads.

2.2 Priority Classes

When the goal is to establish priority classes for mean
performance (rather than meeting specific deadlines), ex-
isting work can be divided into techniques which sched-
ule transactions (i) outside the DBMS and (ii) inside the
DBMS. External scheduling is typically implemented us-
ing admission control to prevent transactions from enter-
ing the DBMS. Internal scheduling schedule transactions
as they execute within the database.

The admission control approach is based on the princi-
ple that DBMS performance often declines as the number
of executing transactions and the demand on system re-
sources and data contention (locking) increase. Admis-
sion control deals with these problems by limiting the
number of transactions executing inside the DBMS by
holding transactions “outside of the database” until the
load subsides.

Recent work at IBM implements priority classes in
admission control [15]. The approach makes admission
control decisions based not only on the number of trans-
actions in the DBMS, but also on transaction priorities, by
limiting the number of low-priority transactions that are
able to interfere with high-priority transactions. Such ad-
mission control also limits inefficiencies introduced when
the system is under overload, such as virtual memory pag-
ing and thrashing. Consequently, high-priority transac-
tions under overload can benefit significantly.

We believe that prioritization based on admission con-
trol cannot fully exploit transaction scheduling to im-
prove system performance. The fundamental problem is
that admission control has limited information about re-
source utilization at the database. Scheduling transactions
within the DBMS, however, has numerous benefits: The
database system can easily parse and generate query plans
for transactions, allowing more intelligent decisions to be
made, including analysis to determine which resources
transactions are most likely to contend for, if any. Only
the DBMS itself can actively make decisions using the
detailed state of the system and resource allocations (i.e.
pending 1/0 requests and granted locks).

There is much room for further research in transac-
tion scheduling internal to the DBMS. The most pertinent
work in this area is by Carey et al. [9], who study our
same fundamental problem — priority scheduling within
a DBMS to improve the performance of high-priority
transactions. They argue that transaction prioritization
can be implemented by scheduling bottleneck (“critical’)
DBMS resources, and proceed to study the performance
of several priority algorithms in simulation. They as-
sume a read-only workload, but recommend that mixed
read/write workloads be examined in the future. In this
paper our workloads are mixed read/write and our work
is an implementation rather than a simulation study.

There is little research in implementations of prioritiza-
tion in conventional DBMS. As a testament to the impor-
tance of the problem, both IBM DB2 [14] and Oracle [18]
offer CPU scheduling tools for prioritizing transactions.
Experimentally, we find that, for our workloads, these
tools provide nowhere near the improvement offered by
the prioritization schemes implemented in this paper.

3 Experimental Setup

This section describes experimental setup details includ-
ing the workloads, hardware, and software used.

3.1 Workloads

As representative workloads for OLTP and Transactional
web applications, we choose the TPC-C [10] and TPC-
W [11] benchmarks. TPC-C and TPC-W are designed as
closed loop systems, with a fixed number of clients con-

nected to the database that alternatively wait and execute
transactions against the database. The time spent waiting
between transactions is known as the think time, and mod-
els interactive clients who take time to interpret results.
Varying the think time changes the amount of contention
and load on the system by changing per-client transaction
inter-arrival times; shorter think times result in a greater
number of active (non-thinking) clients, and longer think
times result in fewer active clients.

A goal of this work is to evaluate prioritization under a
range of levels of concurrency (number of active clients).
The level of concurrency in the database can be adjusted
by either adjusting the think time, or by holding think
time fixed and increasing the number of clients connected
to the database. We find that both methods yield very
similar results. For all our resource breakdown graphs
(see Section 4), we will express our results as a function
of varying the number of active clients connected to the
database (and holding the think times fixed at zero). For
the prioritization experiments (see Section 5), we will in-
stead sometimes prefer to look at a range of think times,
because varying the number of clients (active or non-
active) affects other system overheads such as context-
switching and swapping which sometimes leads to unde-
sirable experimental variability.

For both TPC-C and TPC-W, a priority is assigned to
each transaction, chosen according to a Bernoulli trial
with probability 10% of being assigned high-priority and
90% of being assigned low-priority. In practice the ratio
of high-priority to low-priority transactions may vary.

The TPC-C workload in this study is generated using
software developed at IBM. We modify TPC-C slightly to
remove the restriction that individual clients must always
access the same warehouse and district. This change pro-
duces a more uniform access pattern to the database when
the number of clients is larger than that dictated by the
TPC-C specification. The TPC-W workload is generated
using the publicly available TPC-W Kit from PHARM
[8]. Minor madifications to TPC-W are made to improve
performance, including rewriting the connection pooling
algorithm to minimize overhead.

3.2 Hardware and DBMS

All of the TPC-C experiments for DB2 and Shore are
performed on a Pentium 4, 2.2-GHz Why equipped with
1 GB of main memory and two hard drives, one 120
GB IDE drive and a 73 GB SCSI drive. The TPC-C
PostgreSQL experiments are conducted on a comparable
machine with 2 1-GHz processors and 2 GB of RAM,
allowing us to handle the larger memory requirements
of PostreSQL. The results for PostgreSQL on the dual-
processor machine are similar to those when performed
on the single-processor 2.2-GHz machine used by DB2
and Shore. The TPC-W experiments are all conducted
with the database running on the 2.2-GHz machine; the

web server and Java servlet engine run on a Pentium 111,
736Hz processor with 512 MB of main memory; and the
client applications run on two other machines. The oper-
ating system on all machines is Linux 2.4.17.

The DBMS we experiment with are IBM DB2 [14] ver-
sion 7.1, PostgreSQL [17] version 7.3, and Shore [16] in-
terim release 2. Several modifications are made to Shore,
to improve its support for SI X locking modes, and to fix
minor bugs experienced in transaction rollbacks.

4 The Bottleneck Resource

Given the complexity of modern database systems, it is
extremely difficult to implement prioritization for every
resource. ldentification of the bottleneck resource (which
dominates transaction execution times) is essential for
maximizing the benefits of prioritization.

We start with a description of the model used for break-
ing down transaction resource utilization and then de-
scribe breakdown results on a variety of databases and
workloads under a range of configurations.

4.1 DBMS Resources: CPU, 1/0, Locks

Given that our goal is improvement of individual transac-
tion execution times, and not overall system throughput,
it is important to break down the execution times from the
point of view of a transaction. We focus on three funda-
mental DBMS resources: CPU, 1/O, and Locks, chosen
since they are controlled directly by the database, and are
believed to be important in performance [2].

We denote by Tr,..,s the total execution time (“wall
clock time”) of a transaction, i.e., the difference between
its arrival time, Tgpa 1N, and its completion time (COM-
MIT or ROLLBACK), TEnp- Trrans iS broken into
components representing execution time spent using each
resource respectively: Tepy, Tro, and T ock-

The time spent using CPU resources, Topy, CON-
sists of the time transactions spend executing (Tc puRun)
and waiting to execute on a CPU (Topuwait). The
DBMS in this study use generalized processor-sharing
CPU scheduling, resulting in To pyrun and Topuw ait
being interleaved, as the system context switches between
processes and threads. Time spent using the CPU for
tasks not directly on behalf of a specific transaction (e.g.,
cache management, networking), denoted by Tcpusys,
is not considered in this study.

Time spent using 1/0 resources, Tro, is accumulated
when transactions initiate and block until 1/0 activity
completes (i.e. reading/writing a database page). This
time is almost exclusively the time spent waiting for 1/O
requests to complete, denoted by Trowai:. Time spent
performing asynchronous 1/O, denoted by Tro Async: IS
not charged to T'r,qns, €ven though it may be initiated
(directly or indirectly) by a transaction. Additionally, 1/0

activity performed by the operating system, such as vir-
tual memory paging, is not included in the I/O time.

Lock resources, as considered in this study, are more
unconventional, warranting further detail. Database locks
are broken into “heavyweight” and “lightweight’ locks.
Heavyweight locks are used for logical database objects,
to ensure ACID properties for the database. Lightweight
locks, include spinlocks and mutexes used to protect data
internal to the database engine. This study assumes that
lightweight locking is never a bottleneck, and considers
only heavyweight locking. We use the term “locks” to
refer to heavyweight locks throughout.

Trocr denotes the time transactions spend on locks.
This is broken into the time spent holding the lock
TrockHoia and the time spent waiting for the lock
Trockwait- When a transaction holds a lock, it uses or
waits for other resources in the system. As a result, we
consider Tz, to be made up exclusively by Tz ockw ait-

In summary, we make the following assumptions:

TTrans Tepu + Tro + Trock
Tecru = Topuwait + TcPURun
Tro = Triowait
TLock = TLockWaz't

4.2 Breakdown procedure

To identify the bottleneck resource, for each experiment
we divide the execution time of transactions into three
components: CPU, /O, and time waiting on locks (Lock-
Wait). Real world databases such IBM DB2 and Post-
greSQL provide limited built-in facilities for measuring
resource usage. In the case of DB2, since source code
is unavailable, we rely on the DB2 shapshot and event
monitoring [14] functionality. For PostreSQL and Shore
DBMS we implement custom measurement functionality
by instrumenting the DBMS itself. We compute the total
CPU, I/0 and LockWait over all transactions in a given
experiment and then determine the fraction each compo-
nent makes up of the sum of all execution times.

For IBM DB2 and PostgreSQL, which follow a
process-based architecture, we also verify the resulting
breakdown at the operating system level via the Linux
vnst at command. Specifically we record the frac-
tion of time that database processes spend in the CPU
run queue (TASK_RUNNING state), blocked on 1/O
(TASK_INTERRUPTIBLE state), or waiting for locks
(TASK_UNINTERRUPTIBLE state).

4.3 Breakdown results

Central to the thesis of this work is the idea that under-
standing a workload’s resource utilization is essential for
implementing priorities. Towards this end, we construct
resource utilization profiles for TPC-C under IBM DB2,

100 m— 100
[80| (4] 80
g £ £
8 = =
3 s 60 s 60
g 5 5
£ < 40| < 40|
14 e e
2 & Lo mm 10 & 50 HH 10
[Lock [Lock
0 0 CcPU 0 0 CPU
1C 10C 20C 50C 70C 100C 200C 5WH 10WH 20WH 30WH 5WH 10WH 20WH 30WH
(@) DB2: Varying Clients, 10 Ware- (b) DB2: 10 Clients, Varying Ware- (c) DB2: Standard Scaling (10 clients
houses houses per WH)
100 100,
qg, g 80 g 80
= | |
8 s 60 s 60
5 ks ks
g ’g 40 g 40
o o o
) o) o)
¢ Hl 0 & 2of I 10 & 2oyl 10
[Lock [Lock [Lock
I CPU o [cPU o [cPU
1C 10C 20C 50C 70C 100C 200C 5WH 10WH 20WH 30WH 5WH 10WH 20WH 30WH
(d) Shore: Varying Clients, 10 Ware- (e) Shore: 10 Clients, Varying Ware- (f) Shore: Standard Scaling (10 clients
houses houses per WH)
100, 100,
° o 80 o 80
£ £ £
g 8 60 8 60
e e e
k] k] k]
z £ 40 g 40
g g g
¢ ¢ ¢
0 20 I 10 20 HH 10
[Lock [Lock [Lock
= cPU 9 cpPU 9 cpPU
1C 10C 20C 50C 70C 100C 0 5WH 10WH 15WH 20WH 0 5WH 10WH 15WH 20WH
(9) PostgreSQL: Varying Clients, 10 (h) PostgreSQL: 10 Clients, Varying (i) PostgreSQL: Standard Scaling (10
Warehouses Warehouses clients per WH)

Figure 1: Resource breakdowns for TPC-C transactions under varying databases and configurations. The first row
shows DB2; the second row shows Shore; and the third row shows PostgreSQL.. Figures 1(a), 1(d), 1(g) show the impact
of varying the level of concurrency in the database by increasing the number of active clients. Figures 1(b), 1(e), 1(h)
show the impact of varying the size of the database (number of warehouses) while holding the number of clients fixed.
Figures 1(c), 1(f), 1(i) reflect configurations that scale the concurrency and database size simultaneously so that the
number of clients is always 10 times the number of warehouses, in accordance with TPC-C specifications.

100

60

40

Percent of total time

20/ M 10
[Lock
[CcPU

12C 25C 50C 100C 150C

(a) IBM DB2

100

80

60

40

Percent of total time

20/ M 10
[Lock
[CcPU

12C 25C 50C 100C 150C

(b) PostgreSQL

Figure 2: Resource breakdowns for TPC-W transactions under IBM DB2 and PostgreSQL. Since there does not exist
a TPC-W implementation for Shore, there is no breakdown graph for Shore. Observe that DB2 sees very little locking
and PostgreSQL sees virtually none. Observe that for TPC-W, CPU is the dominant resource.

PostgreSQL, and Shore, and TPC-W under IBM DB2 and
PostgreSQL. We examine how these profiles change un-
der different levels of concurrency and database sizes.

Figure 1 shows the resource breakdowns measured for
TPC-C under IBM DB2, PostgreSQL, and Shore, de-
picting the average portions (indicated as percentages) of
transaction execution time is due to CPU, 1/O, and Lock
resource usage. Although these show breakdowns nor-
malized to 100%, there is a small measurement error, less
than 10%. We attribute this error to (i) external system
load and (ii) high granularity I/0 and CPU measurements.

For each DBMS, Figure 1 presents three sets of results
to demonstrate the most significant trends. In the first col-
umn, the database size is held constant, and the number
of clients connected to the database is varied to vary con-
currency. In the second column, the number of clients is
held constant at 10 (with zero think times), and the size of
the database is varied by increasing the number of ware-
houses. For large databases (large number of WH), this
column differs significantly from TPC-specifications, as
the number of clients is far smaller than intended. In the
third column, the number of clients and the database size
are scaled together as specified by the TPC-C specifica-
tions, to demonstrate breakdowns for standard, “realis-
tic” configurations.

The first thing to observe in Figure 1 is that the first
and second rows, corresponding to DB2 and Shore re-
spectively, are quite similar. This is expected due to the
fact that both databases use traditional locking. In both
DB2 and Shore under TPC-C it is clear that locks are the
bottleneck resource, for a wide range of configurations.
Generally as the level of concurrency increases (see 1st
column and look in the direction of more active clients)
locks become increasingly important. As the size of the
databases increases (see 2nd column), locks become less
important, since clients are less-likely to contend for data.
While both I/O and CPU grow at similar rates in Shore as

the size of the database increases, for DB2 the growth in
the CPU component outpaces the growth in 1/O, result-
ing in a CPU bottleneck in these outlying cases. From the
3rd column, which shows the standard case, it is clear that
locks are the bottleneck resource for Shore and DB2.

By contrast, looking at PostgreSQL results (shown in
the third row of Figure 1), we see that CPU is always
the dominating resource. As the concurrency level is in-
creased (see 1st column), LockWait increases, but CPU
remains the bottleneck. As the size of the database grows
(see 2nd column), I/O becomes increasingly important,
but it’s still not the bottleneck. The stark difference be-
tween the PostgreSQL resource breakdowns under TPC-
C and those for Shore and DB2 may be attributed to the
fact that PostgreSQL uses MVCC [6], which inherently
requires much less locking. For the PostgreSQL experi-
ments, Figures 1(h) and (i) the case of 30 WH is not pre-
sented due to insufficient RAM.

Each breakdown presented in Figure 1 is an average
computed over all transactions in an experimental run,
and as such, may not be representative of any particu-
lar, or even most transactions. The breakdowns can be
sharply skewed by a small fraction of exceptional trans-
actions with extremely long execution times. Thus, the
breakdowns should be taken as an indicator of the rela-
tive importance of the resources while minimizing aver-
age transaction execution times.

Figure 2 shows resource breakdowns for TPC-W trans-
actions under IBM DB2 and PostgreSQL as a function of
the number of active clients connected to the database.
The size of the database is held constant and is repre-
sentative of a database used by ten clients according to
the TPC-W specification, examining extremely high con-
tention. PostgreSQL and DB2 see little, if no locking, as
TPC-W intrinsically has very little data contention. The
MVCC used in PostgreSQL can usually obviate the need
for lock waits. Even DB2’s traditional locking waits in-

6000

5000
54000

3000

Avg Time (m:

2000

1000

No Lock Waits

Lock Waits

Figure 3: Comparison of execution times for transactions
that never waited for locks versus those that waited for
locks under Shore under TPC-C. Given that a transaction
waits on a lock, its expected execution time is 28.5 times
longer than if it did not.

frequently. 1/O costs are also low, as the databases are
small relative to main memory. Thus, CPU is the domi-
nant (bottleneck) resource.

In another experiment, under TPC-W, we purposely re-
duce the size of the database well below that prescribed
by the TPC-W specification, and varied the concurrency.
Since clients are forced to access a smaller database, data
contention increases dramatically. For this extreme ex-
periment, we find that locking represents a significant
portion of resource usage (between 40% and 60% of total
execution time). The point is that even TPC-W work-
loads under sufficiently high load will experience behav-
ior similar to that under TPC-C, despite the simplicity of
the TPC-W transactions.

5 Scheduling the bottleneck

As seen in Section 4, the bottleneck resource for TPC-C
under Shore and DB2 is LockWait, suggesting prioritiza-
tion by scheduling the lock queues. Figure 3 illuminates
this point, showing that waiting on a lock can increase
execution time by a factor of almost thirty. For the TPC-
W workload under any DBMS and for PostgreSQL, CPU
is the bottleneck resource and lock time is almost non-
existent, suggesting prioritization of the CPU.

Thus throughout we examine both lock and CPU
scheduling for both TPC-C and TPC-W. However, we
have reservations about the TPC-W workload, and be-
lieve it is too simplistic for two reasons: (i) TPC-W
transactions are extremely simplistic, and (ii) TPC-W
transactions need very little concurrency control. The
TPC-C workload, with more complex transaction inter-
actions, is in fact more representative of real-world appli-
cations. Even TPC-W like workloads, under sufficiently
high loads, will experience resource breakdown utiliza-
tions more similar to that of TPC-C.

We begin by defining the specific scheduling policies
which we will explore.

5.1 Definition of the Policies

Our scheduling policies are divided into lock scheduling
and CPU scheduling policies:

Lock scheduling policies We consider non-preemptive
scheduling policies where the transaction holding the lock
cannot be preempted (forced to release the lock) until it
releases the lock willingly. Subsequently, we consider
preemptive policies in which transactions holding locks
can be forced to release them. Preemption typically in-
volves aborting, rolling back, and resubmitting the trans-
action, increasing work for the DBMS.

The simplest non-preemptive policy, NP- LQ, simply
reorders the transactions waiting in the lock queue, grant-
ing locks to high priority transactions before those of low-
priority. The NP- LQ policy has two problems in the-
ory: (i) priority-inversions, where a high-priorty transac-
tion waits for a low-priority transaction to release a lock,
are ignored, and (ii) although a high-priority transaction
moves ahead in the queue, it still waits for the transac-
tion(s) holding the lock to complete (known as “excess
time” in queueing theory).

The NP-LQ I nherit policy is a non-preemptive
policy to fix problem (i). It raises the priorities of trans-
actions from low- to high-priority when a high-priority
transaction is forced to wait on one of low-priority. This
is often known as “priority-inheritance” [19].

The P- LQpolicy is a preemptive policy to fix problem
(ii). When a high-priority transaction needs a lock held
by a low-priority transaction, the low-priority transaction
is aborted. In practice, for systems with traditional lock-
ing, it is common for the high-priority transaction to have
to wait for the low-priority transaction’s rollback phase to
complete before it can acquire the lock. This can reduce
the effectiveness of preemption. Furthermore, the extra
work created by preemption also reduces its potential ef-
fectiveness, potentially slowing down other transactions.

CPU scheduling policies We do not distinguish be-
tween preemptive and non-preemptive policies since all
of our systems use (preemptive) generalized processor
sharing (GPS).

We start with the simplest algorithm: CPU- Pri o.
Here the CPU resource is scheduled via weighted GPS,
where high-priority transactions are given higher prior-
ity at the CPU than low-priority transactions. Specif-
ically, under PostgreSQL and DB2 our implementation
of CPU- Pri o assigns UNIX priority nice level —20 to
high-priority and +20 to low-priority transactions. Under
Shore, threads for high-priority transactions are assigned
a higher Sthread priority (t _ti me_criti cal)and low-
priority transactions are assigned regular Sthread priority.

Although the CPU- Pri o policy schedules CPU, not
locks, it is clear that this policy might create a problem
of priority inversion due to locks. Consider the situation

where a high-priority transaction is blocked waiting for a
lock held by a low-priority transaction. It is desirable to
increase the CPU priority of the low-priority transaction
so that it can more quickly complete.

To remedy this problem, CPU-Prio-Inherit
schedules CPU according to CPU- Pr i o, however allows
a low-priority transaction which is holding a lock desired
by a high-priority transaction to boost its CPU priority to
that of the high-priority transaction.

Organization of remaining sections In Section 5.2 we
discuss simple priority schemes which require no pre-
emption and no inheritance: NP- LQand CPU- Pri o de-
fined above. In Section 5.3 we discuss priority schemes
involving priority inheritance: NP-LQ- | nherit and
CPU- Prio-Inherit. In Section 5.4 we discuss pri-
ority schemes which preempt the lock priorities: P- LQ.

5.2 Simple scheduling

The simple scheduling policies with no priority inheri-
tance and no lock preemption, NP- LQand CPU- Pri o,
exhibit striking differences depending on the workload
and the DBMS. Figures 4 and 5 highlight these differ-
ences, showing the performance of high- and low-priority
transactions using the policies for TPC-C and TPC-W
workloads respectively. In all results, the concurrency
varies on the x-axis, from high levels of concurrency on
the left to low concurrency on the right. Concurrency
is controlled either by varying think time (more natural
for TPC-C) or equivalently varying the number of clients
(more natural for TPC-W).

The optimal simple scheduling policy for TPC-C de-
pends on the DBMS. Under Shore with TPC-C (see Fig-
ure 4(a)) NP- LQis much more effective than CPU- Pri o
at improving high-priority transactions, under high load
(when think time is less than 4000ms). In fact, simple
lock queue reordering (NP- LQ) improves execution time
of the high-priority transactions by a factor of 3. Un-
der low loads, CPU and Lock scheduling become ap-
proximately equivalent. The penalty to the low-priority
jobs under both NP- LQand CPU- Pr i o is negligible and
tracks the “Default” no priority setting (see Figure 4(b)).
Lock scheduling is extremely effective under Shore be-
cause locks dominate transaction execution times under
Shore’s traditional locking protocol.

By contrast, under PostgreSQL with TPC-C (see Fig-
ure 4(c)), lock scheduling is not as effective as CPU
scheduling. As the think time ranges from 5 to 25 sec-
onds in these experiments, the number of running clients
drops from 50 where locks are the dominating resource,
to 20, where locks and CPU both dominate. Under
high loads, NP- LQscheduling improves high-priority ex-
ecution times by a factor of 1.3, whereas CPU- Pri o
achieves 1.6x improvement. The penalty to the low-

priority jobs under both NP- LQand CPU- Pr i o is again
largely negligible (see Figure 4(d)).

CPU scheduling is more effective than lock schedul-
ing in PostgreSQL due to the way PostgreSQL imple-
ments locks. Instead of waiting on locks, transactions
wait for the holders of locks to complete (these protocols
are nearly equivalent under standard Two-Phase Locking
protocols). When granting locks, PostgreSQL wakes all
of the waiting transactions and lets them “race” to ac-
quire the lock. The first transaction(s) to try to acquire
the lock is granted it. Since transactions can only obtain
locks when given the CPU, and high-priority transactions
are more likely to get the CPU under CPU- Pri o, CPU
prioritization effectively prioritizes locks as well.

For TPC-W, we saw that locks are never the bottleneck
resource (see Figure 2). Thus it does not seem likely
that lock scheduling will be effective. Figure 5 shows
the results of prioritization under TPC-W as a function
of the number of active clients. As expected, NP- LQ
does not significantly improve performance of the high-
priority transactions. However CPU- Pr i o dramatically
improves performance of high-priority transactions, by a
factor of up to 5 under high load (high number of active
clients). As in the case of TPC-C, the low-priority trans-
actions are not significantly penalized.

Observe that for both algorithms NP- LQ and CPU-
Pri o, under all DBMS and workloads studied, the low
priority transactions on average are not significantly pe-
nalized. This result is important, and consistent with the-
oretical expected results: Performance of a small class of
high-priority transactions can be improved without harm-
ing the overall performance of low-priority transactions.

5.3 Priority inheritance

In this section we evaluate the two algorithms for pri-
ority inheritance: NP- LQ | nherit and CPU- Pri o-
I nheri t , which are extensions of the NP- LQand CPU-
Pri o policies respectively.

Figure 6 compares the policies NP- LQ- | nheri t and
NP- LQfor the Shore DBMS under TPC-C for a range of
concurrency levels. We find that there is no significant
benefit to adding priority inheritance to the NP- LQ

For PostreSQL under TPC-C, adding priority inher-
itance to NP- LQ offers no appreciable gain in perfor-
mance, however priority inheritance when combined with
CPU scheduling is beneficial. Inheritance of CPU priority
(Figure 7) improves high-priority transactions by a factor
of 6, doubling the improvement of CPU- Pr i 0. This sig-
nificant leap in performance of CPU- Pri o- | nheri t
over CPU- Pri o suggests that priority-inversion is a
common problem in PostgreSQL under CPU- Pri o.

For TPC-W, recall from Section 5.2 that CPU schedul-
ing (CPU- Pri o) is more effective than NP- LQ Thus
Figure 8 compares the policies CPU- Pri o- I nherit
to CPU- Pri o for the TPC-W workload on PostgreSQL.

5000

NP-LQ - HighPrio v~
4500 CPU-Prio - HighPrio -0 1
4000 [No Priorities
£ 3500
o L
£ 3000
E
2500 |
X 2000 |
L
2 1500 |
< Voo
1000
500
0 L L L L i —
1000 2000 3000 4000 5000 6000 7000
Avg Think Time (ms)
(a) Shore High-Priority
14000 ; S—
NP-LQ - HighPrio <
CPU-Prio - HighPrio &
12000 No Priorities 1
2 10000 |
E 8000 [~
[
3
€ 6000 |
] L
2 4000 |
2000 r

Avg Think Time (ms)

(c) PostgreSQL High-Priority

5000 ‘ ‘ .

< NP-LQ - LowPrio ——v-
4500 CPU-Prio - LowPrio ~-&-
4000 No Priorities

Avg Exec Time (ms)

0 L L L "@'"‘"’"‘“)
1000 2000 3000 4000 5000 6000 7000

Avg Think Time (ms)

(b) Shore Low-Priority

14000 ¢— : , -
Q NP-LQ - LowPrio v
T CPU-Prio - LowPrio -G
12000 N, No Priorities]
2 10000 |
(]
£ 8000
=
3
o 6000 |
a
£ 4000
2000
0 L . .
5 10 15 20 25

Avg Think Time (ms)

(d) PostgreSQL Low-Priority

Figure 4: Mean execution times for high- and low-priority TPC-C transactions under non-preemptive scheduling strate-
gies NP- LQand CPU- Pr i 0. We see that NP- LQis most effective under Shore, whereas CPU- Pr i o is most effective
under PostgreSQL. In the above graphs concurrency level (load) increases as think time goes down.

We find that there is no improvement for CPU- Pr i o-
I nherit over CPU- Pri o. This is to be expected given
the low data contention found in the TPC-W workload;
priority inversions can only occur during data contention.

Results for low-priority are not shown, but as in Fig-
ure 4, low-priority transactions are only negligibly penal-
ized on average.

5.4 Preemptive scheduling

Under non-preemptive lock scheduling (NP- LQand NP-
LQ I nheri t), high-priority transactions can only move
ahead of low-priority transactions waiting in the lock
queue. A high-priority transaction cannot preempt a low-
priority transaction (potentially) holding a lock.

Figure 9 shows the average length of lock queues in
Shore and PostgreSQL for TPC-C workloads under a
range of concurrency. The queues themselves are fairly
short (1.5-4 transactions) under all levels of concurrency

examined. The NP- LQand NP- LQ | nheri t policies
improve performance by allowing a transaction to skip
ahead of these few transactions in the queue.

The goal of preemptive lock prioritization (P- LQ) is to
eliminate the time high-priority transactions spend wait-
ing for current low-priority lock holder(s) to release the
lock. Surprisingly, we find that P- LQ is a rather poor
policy for our workloads and goals. Figure 10 compares
the performance of P- LQ against the most effective of
our non-preemptive algorithms for Shore and PostreSQL
under the TPC-C workload. For Shore, we compare P-
LQto NP- LQand find high-priority transactions benefit
at most 30%, however the penalty to low-priority trans-
actions is devastating. Low-priority transactions may be
penalized by a factor of up to 5. For PostreSQL, we com-
pare P- LQto CPU- Pri o- I nherit and find no addi-
tional benefit for high-priority transactions. Low-priority
transactions suffer by about about 25% under P- LQ.

The reason why low priority transactions suffer so

500
450 &
400 |
350 |
300 |
250 |
200 |
150 t
50 t

0

NP-LQ - HighPrio v~
CPU-Prio - HighPrio &+ 1
No Priorities

Avg Exec Time (sec)

50 40 30
Number of Clients

80 70 60

(a) PostgreSQL High-Priority

Figure 5:

450

400 R

350 £ —

=0 NG

250 7 \\\\\ | P O

ool

150 \

100 \
50
0

NP—LQ‘— LowPrio v
CPU-Prio - LowPrio &+
No Priorities

Avg Exec Time (ms)

50 40 30 20 10 0
Number of Clients

80 70 60

(b) PostgreSQL Low-Priority

Mean execution times for high- and low-priority TPC-W transactions under non-preemptive scheduling

strategies NP- LQand CPU- Pr i 0. We see that CPU- Pr i o improves mean execution time for high-priority requests by
a factor of up to 5. In the above graphs, the concurrency level (load) increases as the number of clients goes up.

5000
4500
4000 r
3500 r
3000 r
2500 r
2000 r
1500‘;®>
1000 r
500

NP-LQ - HighPrio —v—
NP-LQ-Inherit - HighPrio -~ 1
No Priorities

Avg Exec Time (ms)

e S

0 L L L L -
1000 2000 3000 4000 5000 6000 7000
Avg Think Time (ms)

Figure 6;: Evaluation of priority inheritance policy NP-
LQ I nherit for Shore under TPC-C. Adding priority
inheritance to reordering of lock queues fails to improve
performance significantly. PostgreSQL shows similar re-
sults. The concurrency level (load) increases as the aver-
age think time goes down.

much under preemptive policies is that preemption has
a cost. The preempted transaction must be aborted
and rolled back and restarted, introducing extra work.
This overhead is more severe under Shore than under
PostreSQL, which uses MVCC [6], where abortion and
rollback costs are low.

TPC-W results for P- LQare omitted because lock con-
tention is so low; thus lock scheduling is insignificant.

Future extensions to Preemptive Priorities Under
both the TPC-C and TPC-W workloads in each DBMS,
preemptive lock scheduling (P- LQ) is no better than the
best non-preemptive policies. However, the preemptive

10

14000 ————
CPU-Prio - HighPrio -
CPU-Prio-Inherit - HighPrio @~
12000 No Priorities]
2 10000 |
Py
£ 8000 f
=
€ 6000 |
|_|>j '
£ 000
2000 ¢-O 76
0 L L L
5 10 15 20 25
Avg Think Time (ms)
Figure 7: Evaluation of priority inheritance, combined

with CPU scheduling, policy CPU- Pri o- | nheri t un-
der PostgreSQL under the TPC-C workload. CPU-
Prio-Inherit can be a very effective tool for Post-
greSQL’s MV CC-based system.

policy P- LQ is rather simplistic: high-priority transac-
tions preempt any low-priority transactions in their way.
Alternatively, since the cost of waiting for the lock may
be cheaper than the overhead of preempting the low-
priority transaction, there is room for improvement over
this “bulldozing” approach to preemption.

We explore a few other preemptive algorithms, that are
more selective in the decision to preempt. These algo-
rithms predict a victim transaction’s remaining life ex-
pectancy and the cost of rolling back the victim to de-
termine whether to preempt or wait. The predictors we
examine are (i) the number of locks held of the victim
and (ii) the “wall-clock” age of the victim. Although pre-
liminary, we find these are both poor predictors of both

450

CPU-Prio - High|5ri0 J—
400 + CPU-Prio-Inherit - HighPrio o
No Priorities
—~ 350
(s}
[
£ 300
()
E 250
[
@ 200
i
> 150 r
4
100 D I ————— R R—— o,
sof T v\
V-
80 70 60 50 40 30 20 10 0
Number of Clients
Figure 8: Comparison of CPU-Pri o-I nherit to

CPU- Pri o under PostgreSQL for the TPC-W workload.
The graph shows no additional benefit for priority inheri-
tance over simple CPU scheduling.

the rollback costs and life-expectancy of our transactions.

6 Conclusion

In this paper we provide an implementation of prioritiza-
tion of differentiated performance classes within a con-
ventional (general-purpose) relational database running
TPC-C or TPC- Wworkloads.

To do this, we start by identifying the bottleneck re-
source at which the prioritization scheduling should take
place. We study the lifetime of a transaction and divide
it into three components: CPU time, 1/O time, and time
spent waiting for locks. The results are clearly broken
down by workload and concurrency control mechanism.
The bottleneck resource for DBMS using traditional lock-
ing (such as Shore and DB2) under TPC-C like work-
loads is lock waiting time, across a wide range of config-
urations. By contrast, the bottleneck resource for DBMS
using either MVVCC or running under TPC- Wlike work-
loads (which have less data contention) is CPU.

The above bottleneck analysis provides a roadmap for
choosing prioritization algorithms. We experiment with
lock scheduling algorithms and CPU scheduling algo-
rithms. We consider non-preemptive policies, policies
with priority inheritance, and preemptive policies. As
above, the results are clearly broken down by workload
and concurrency control mechanism.

For DBMS using traditional locking such as Shore and
(we believe) by extension DB2, under TPC-C like work-
loads, we find that simple non-preemptive lock schedul-
ing (NP- LQ) is most effective. High-priority transaction
execution times drop by a factor of 3, while low-priority
transactions are hardly penalized. Adding priority inher-
itance or preemption does not appreciably help, and pre-
emption especially penalizes low-priority transactions.

For DBMS using MVCC (with TPC-C or TPC-W

11

Avg Queue Length

1s 2s 3s 4s 5s 6s 7s
Avg Think Time (sec)

(a) Shore

PostgreSQL Lock Queue Lengths

Avg Queue Length

7w 111
Avg Think Time (sec)

(b) PostgreSQL

Figure 9: Average lock queues for TPC-C are extremely
short. Thus reordering lock queues may not suffice.

workloads) and for TPC-W workloads (with any concur-
rency control mechanism), we find that lock scheduling
is largely ineffective (even preemptive lock scheduling)
and CPU scheduling is highly effective. For example, we
find that for PostgreSQL running under TPC-C, the sim-
plest CPU scheduling algorithm CPU- Pri o provides a
factor of 2 improvement for the high-priority transactions,
and adding priority inheritance (CPU- Pri o- I nherit)
brings this up to a factor of near 6 improvement under
high loads, while hardly penalizing low-priority transac-
tions. For PostgreSQL running under the TPC-W work-
load, we find that the best scheduling algorithm is the
simplest CPU scheduling policy CPU- Pr i o, which im-
proves performance for high-priority transactions by a
factor of up to 5. The reason why inheritance is more
effective for the TPC-C example above is that TPC-C has
much more data contention than TPC-W, leading to more
priority inversions.

In conclusion, our results suggest that (i) knowledge of
the bottleneck resources is important for determining the
best scheduling policies, and (ii) priority scheduling at
the bottleneck resource using simple algorithms can yield
significant performance improvements for both TPC-C
and TPC-W workloads on real general-purpose DBMS.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]

R. K. Abbott and H. Garcia-Molina. Scheduling real-time trans-
actions. In Proceedings of SGMOD, pages 71-81, 1988.

R. K. Abbott and H. Garcia-Molina. Scheduling real-time trans-
actions: A performance evaluation. In Proceedings of Very Large
Database Conference, pages 1-12, 1988.

R. K. Abbott and H. Garcia-Molina. Scheduling real-time trans-
actions with disk resident data. In Proceedings of Very Large
Database Conference, pages 385-396, 1989.

R. K. Abbott and H. Garcia-Molina. Scheduling I/0 requests with
deadlines: A performance evaluation. In |[EEE Real-Time Systems
Symposium, pages 113-125, 1990.

R. K. Abbott and H. Garcia-Molina. Scheduling real-time trans-
actions: A performance evaluation. Transactions on Database
Systems, 17(3):513-560, 1992.

Philip A. Bernstein and Nathan Goodman. Multiversion concur-
rency control - theory and algorithms. TODS 8(4):465-483, 1983.

Bugzilla. www.bugzilla.org.

Trey Cain, Milo Martin, Tim Heil, Eric Weglarz,
and Todd Bezenek. Java tpc-w implementation.
http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2000.

M. J. Carey, R. Jauhari, and M. Livny. Priority in dbms resource
scheduling. In Proceedings of Very Large Database Conference,
pages 397-410, 1989.

Transaction Processing Performance Council. TPC benchmark c.
Number Revision 5.1.0, December 2002.

Transaction Processing Performance Council. TPC benchmark w
(web commerce). Number Revision 1.8, February 2002.

J. Huang, J.A. Stankovic, K. Ramamritham, and D. F Towsley. On
using priority inheritance in real-time databases. In IEEE Real-
Time Systems Symposium, pages 210-221, 1991.

K. D. Kang, Sang H. Son, and John A. Stankovic. Service differ-
entiation in real-time main memory databases. In Fifth IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed
Computing, 29 2002.

IBM Toronto Lab. IBM DB2 universal database administration
guide version 5. Document Number S10J-8157-00, 1997.

Erich Nahum. A method for transparent admission control and re-
quest scheduling in dynamic e-commerce web sites. Unpublished
Manuscript, IBM Research Lab, May 2003.

University of Wisconsin. Shore - a high-
performance, scalable, persistent object repository.
http://ww. cs. w sc. edu/ shore/.

PostgreSQL. ht t p: / / www. post gr esql . or g.

Ann Rhee, Sumanta Chatterjee, and Tirthankar Lahiri. The ora-
cle database resource manager: Scheduling cpu resources at the
application. High Performance Transaction Systems Workshop,
2001.

L. Sha, R. Rajkumar, and J. Lehozky. Priority inheritance proto-
cols: An approach to real-time synchronization. |EEE Transac-
tions on Computers, 39(9):1175-1185, 1990.

Slashdot. www.slashdot.org.

John A. Stankovic, Sang Hyuk Son, and Jorgen Hansson. Miscon-
ceptions about real-time databases. |EEE Computer, 32(6):29-36,
1999.

12

5000 ‘ ‘ ‘ — 9000 ‘ : : : —
NP-LQ - HighPrio - . NP-LQ - Low Prio -G
4500 P-LQ - HighPrio -6+ 8000 | . P-LQ - Low Prio ---m--- 1
4000 Default LS No Priorities
- I)l & 7000 L 1
E 3500 | 1 £ 5000]
(] L 4 ()
g 3000 £ 5000 1
5 2500 | 1 5 N
2 2 4000 1
S 2000 | 1 3 s000 . |
2 1500 | 1 g .
1000 [T gy 1 = 2000]
O RO . .
500 | 000ZH \g;_;w“, @ 1000 ‘u
0 A A A B A 0 A A A T ———
1000 2000 3000 4000 5000 000 7000 1000 2000 3000 4000 5000 6000 7000
Avg Think Time (ms) Avg Think Time (ms)
(a) Shore High-Priority (b) Shore Low-Priority
14000 T —— —— 16000 g- T — - —
CPU-Prio-Inherit - HighPrio -—v-- Yoeg CPU-Prio-Inherit - LowPrio -—v--
P-LQ - HighPrio - P-LQ - LowPrio G- |
12000 No Priorities 1 No Priorities
é 10000 é
(] ()
£ 8000 £
[[
3 3
£ 6000 o
| w
[=2} =2
z 4000 z
2000 g
O L L L O L L L
5 10 15 20 25 5 10 15 20 25
Avg Think Time (ms) Avg Think Time (ms)
(c) PostgreSQL High-Priority (d) PostgreSQL Low-Priority

Figure 10: Comparison of preemptive policy P- LQagainst the best non-preemptive policies for each Shore and Post-
greSQL under TPC-C. The high-priority transactions (left column) show little improvement with P- LQrelative to the
non-preemptive policies. The low-priority transactions (right column) suffer greatly under P- LQ. In the above figures,
the concurrency level (load) increases as the average think time goes down.

13

