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Abstract 

Much research in handwriting recognition has 
focused on how to improve recognizers with constrained 
training set sizes.  This paper presents the results of 
training a nearest-neighbor based online Japanese Kanji 
recognizer and a neural-network based online cursive 
English recognizer on a wide range of training set sizes, 
including sizes not generally available.  The experiments 
demonstrate that increasing the amount of training data 
improves the accuracy, even when the recognizer’s 
representation power is limited. 

1. Introduction 

An important question when building a handwriting 
recognition system is how much training data to collect.  
Because of limits on available data sets, most researchers 
have focused on developing algorithms that generalize 
better from small data sets.  This paper looks at the effect 
of increasing the training set size beyond those generally 
available for online Japanese Kanji and English cursive 
recognizers.  

The Japanese recognizer uses a nearest-neighbor 
classification scheme.  Each character to be recognized is 
first converted to a feature vector and its distance to every 
stored prototype is computed.  The prototype labels are 
the outputs of the system, and the distances are used as 
scores for each character.  Each score is adjusted to take 
into account such things as the frequency of the character 
in natural text, and the position at which it was written in 
the writing box.  Training of the recognizer involves 
choosing the distance metric and the subset of the training 
samples to be used as prototypes. 

The English cursive recognizer uses a Time Delayed 
Neural Network (TDNN). It can be used to recognize 
isolated words written either in print or in cursive. The 
input ink is first segmented and featurized and then fed to 
the neural net. The neural network outputs are in the form 
of a sparse matrix of character probabilities. This matrix 
then goes through a post-processing step which uses a 
language model to arrive at the final result.  

Both of these recognizers were trained with a wide 
range of training set sizes.  Since training a recognizer 
with a large capacity on a small amount of data can result 
in overtraining, we also varied the representation power 
of the recognizers.  The results show that increasing the 
amount of training data increases the accuracy, assuming 
that the recognizer’s representation power is not too 
severely limited. 

We will begin by describing the Japanese recognizer 
in more detail, followed by the experiments conducted 
with its training set.  We then discuss the English 
recognizer and its results with different size training sets.   

2. Online Japanese Kanji recognizer 

The Japanese recognizer used for the experiments in 
this paper is designed to recognize characters in the JIS-
208 character set which are written with three or more 
strokes.  It has three main components: a procedure for 
converting the input strokes to feature vectors, a distance 
metric for comparing feature vectors, and a database of 
prototypes against which the input is compared.  Each of 
these pieces will be described in more detail, followed by 
descriptions of the experiments. 

2.1. Feature Vectors 

The strokes of ink are first scaled and shifted 
horizontally and vertically to fill a fixed square box.  The 
strokes are then smoothed to remove noise from the 
digitizer, and split at cusps and inflection points.  Each 
resulting stroke fragment is classified into one of nine 
categories, as illustrated in Figure 1.   

Some categories allow the stroke fragments to be 
written in both directions, while others separate the 
different writing directions into different categories.  The 
two curved categories allow the fragment to start and end 
at any location in the writing box, as long as the direction 
(clockwise or counter-clockwise) matches the category.  
The last two right-angled categories are special cases of 
the curves, which only match upper-right and lower-left 
corners. Each category is further split into two smaller 
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categories, based on whether the size of the fragment is 
larger or smaller than a fixed fraction of the total 
character size. The stroke smoothing, fragmentation, and 
categorization are implemented using a hand-built finite 
state machine, some details of which are described in 
Reference [3]. 

 

 
Figure 1. Illustration of the nine main feature 
categories.  For each category shown, there are 
large and small versions, used when the fragment 
length is larger or smaller than a fixed fraction of 
the overall character size. 

In addition to the category label, each stroke 
fragment is also represented by the positions of its start 
and end points, which are quantized to 16 levels in the 
horizontal and vertical directions.  The fragment 
categories and start and end points are stored in the order 
in which they were written, yielding the feature vector 
used by the rest of the system.  Similar sets of features 
have been used for example by Reference [2]. 

2.2. Distance Metric 

Since we are using a nearest-neighbor classifier, we 
need a way to measure the closeness of two feature 
vectors of the type described in the previous section.  We 
will first look at measuring the distance between two 
fragments. 

For the fragment start and end points, we begin by 
computing the sum of the squared Euclidean distances 
between the corresponding start and end points of the two 
fragments.  Because of the quantization of the coordinates 
of the start and end points, there is a small range of values 
for this distance measure.  We then go through the 
training data, recording the frequency of a particular 
distance arising from stroke fragments of two instances of 
the same character relative to the frequency of that 
distance between any pair of characters.  A similar 
probability table is built up for the categories of pairs of 
fragments arising from the same character relative to pairs 
of fragments from any characters.  For more details of 
how to compute these probability tables efficiently, see 
Reference [6]. 

These two probabilities are converted to log 
probabilities and added together (with a tuned weighting 
factor), then the resulting scores are added for all 
fragments. This gives the distance measure between two 
feature vectors. This distance metric can only be 
computed between samples written with the same number 
of stroke fragments. 

2.3. Prototype Database 

The final component of the recognizer is a database 
of feature vectors, or prototypes, which represent the 
shapes the recognizer should understand.  These vectors 
are selected from the training data in three main steps.  
First, the distances between all pairs of samples of a given 
character are computed.  The samples are then ordered by 
how many times they are the closest to another sample of 
the same character.  Samples with higher counts can be 
viewed as more representative of other samples than those 
with lower counts.  The second stage goes through all the 
samples in order, checking to see if they are recognized 
correctly with the current prototype database (which is 
initially empty) and adding them to the database if they 
are not.  This may result in overtraining, as large numbers 
of outliers may be added to the database.  The final stage 
removes prototypes from the database, optimizing for 
recognizer accuracy while fitting the database into a 
specified memory budget.  Since the running time of the 
recognizer is roughly proportional to the number of 
prototypes, this also impacts the recognizer speed. 

2.4. Data Collection 

The training data we will use for these experiments 
consists of nearly five million samples of 6847 characters 
in JIS-208 written with three or more strokes.  This data 
was collected over a period of several years from native 
Japanese speakers.  The data was collected on Wacom 
tablets and the Fujitsu Stylistic 2300.  The collection 
mainly consists of natural text.  Care has been taken to 
ensure that rare characters also have a sufficient number 
of samples for training.  The data set has been 
automatically and manually cleaned to ensure that the 
label for each character matches what was actually 
written. 

2.5. Experiments 

With the recognizer and training procedures in hand, 
we can start to look at experiments with differing sizes of 
training sets. As a first test, we extracted the 1012 
characters from the training set that have 1000 or more 
samples.  We then trained recognizers on varying subsets 
of this data, from 10 samples per character up to 1000, to 
see how the accuracy changed. The test sets used for the 
experiments are separate from the training set. The results 
are shown in Figure 2 for two test sets, one that 
approximates the natural frequency distribution (the 
subset of the natural distribution contained in the 1012 
characters selected earlier), and one approximating the 
uniform distribution.  As can be seen, the error rate drops 
significantly as the amount of training data increases, and 
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is just beginning to level off at around 1000 samples per 
character.  The uniform error rate is lower than the natural 
error rate, because the training data is uniformly 
distributed. 

Error Rate vs. Training Samples per Character
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Figure 2. Limited training and test sets to the 
1012 characters for which we have 1000 training 
samples, and trained with varying numbers of 
samples per character.  The natural test set 
contained 79,747 samples, while the uniform test 
set contained 35,096 samples. 

In the second test, we trained the recognizer to handle 
the full JIS-208 character set, and varied the upper limit 
on the number of samples of each character.  Since not all 
characters are equally represented in the training data, 
some characters will have fewer samples than the limit.  
The results of this test are shown in Figure 3. 
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Figure 3. This test used the full JIS-208 character 
set, with upper bounds on the numbers of 
samples of each character.  The natural test set 
for this graph contained 85,655 samples, while 
the uniform test set contained 156,826 samples. 

Overall the error rates are higher, because the 
recognizer now supports 6847 characters instead of 1012.  
At small numbers of samples per character, the training 
set is approximately uniformly distributed.  However, as 
the number of samples increases, only the most common 

characters get more samples added to the training set, so 
the training data distribution looks more like a natural 
distribution.  This is why initially the uniform test set 
gives better scores, while the natural test set has better 
scores at higher numbers of samples per character.  In 
fact, the uniform error rate suffers at higher numbers of 
samples per character because the recognizer is placing 
more weight on the common characters. 

In the third experiment, we imposed some capacity 
constraints on the recognizer’s prototype database.  The 
results are shown in Figure 4.  Each curve in the graph 
represents prototype databases of a fixed size trained with 
varying numbers of samples per character, from 10 to 
100,000.  Database sizes are specified by a memory 
budget.  Each prototype occupies space proportional to 
the number of stroke fragments it contains.  A typical 
640KB prototype database contains 21,000 prototypes.  
The error rates are measured on the natural frequency test 
set.  From this graph we can see that increasing the 
allowed prototype database size can have a significant 
effect on the accuracy, decreasing the error rate from 
8.25% to 5.55% when using all the training data.  The 
larger effect is that increasing the amount of training data 
increases the accuracy, even for the smallest prototype 
database size tested.  Increased capacity helps most at the 
highest numbers of samples per character, where the 
curves begin to separate. 
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Figure 4. Each curve represents a fixed prototype 
database size (recognizer capacity), trained with 
varying numbers of samples per character.  
While increasing the capacity improves 
accuracy, increasing the training data is much 
more helpful.  The error rate was measured on a 
natural frequency test set containing 85,655 
samples.  Note that the error rates for the largest 
database sizes almost overlap.  

3. Online English Cursive Recognizer 

The online English recognizer used for the 
experiments in this paper is designed to recognize words. 
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The characters that make up these words are printable 
ASCII and also include the euro and pound signs. The 
main components of the recognizer are: a procedure for 
converting the input strokes to feature vectors, a time 
delayed neural network, and a post-processing step that 
involves the use of a language model.  

3.1. Feature Vectors 

The ink to be recognized is first split into various 
segments, by cutting the ink at the bottoms of the 
characters. Segmentation thus takes place where the y 
coordinate reaches a minimum value and starts to move in 
the other direction. Similar methods for segmentation 
have been proposed in References [5] and [7]. 

Each of the segments is then represented in the form 
of a Chebyshev polynomial. More details on how these 
polynomials are computed may be found in References 
[1] and [4]. These feature vectors are then fed as inputs to 
the neural network. 

3.2. The Time Delayed Neural Network 

The TDNN used for the recognizer is similar to the 
one proposed in Reference [7]. The outputs from the 
network form a sparse matrix of character probabilities 
that undergo post processing by comparing with a 
language model, before the final results are obtained. 

3.3. Data Collection 

A considerable amount of resources were devoted 
towards collecting the data necessary for making this 
study possible. Our training set has more than a million 
words collected from native English speakers. It consists 
of a mixture of natural text, punctuation, postal addresses, 
numbers, and email and web addresses. Both print and 
cursive data are used for training the recognizer. The data 
set has been randomly sampled into smaller subsets to 
produce the various data set sizes used for training the 
different recognizers. 

The testing set was collected in a manner similar to 
that of the training set and consists of 150,495 words 
(which contain 748,308 characters). The relative weighing 
of the various sample types in the testing set has been 
designed to closely approximate the user experience if the 
user was to use handwriting as the primary method of 
input to the computer.   

3.4. Experiments 

The training data for the recognizer is randomly 
sampled and split up into smaller sizes. We have also 

used various sizes of neural networks for the experiments 
and have obtained accuracy numbers for different neural 
net size against different training set sizes. The results of 
these experiments are shown in Figure 5. 
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Figure 5. The effect of varying the training set 
size on the error rate. Each curve is for a fixed 
neural network size. We see that the error rate 
drops as we increase the amount of training data. 

As can be seen in the above graph, the error rate 
decreases as the number of training samples increases. 
Moreover it is seen that the effect of adding more data is 
more pronounced as the size of the neural network 
increases. When the network size is small the extra 
amount of data does not make much of a difference, but 
as the network size is increased the amount of training 
data begins to make a significant impact. It also follows 
from the above figure that for the same neural network 
size, while increasing the amount of training data 
increases the accuracy, the accuracy gains might not be 
very high unless the complexity of the network itself is 
increased.   

4. Conclusions 

This paper has presented the results of varying 
training set sizes over a wide range for two different types 
of recognizers, a Japanese Kanji recognizer based on a 
nearest-neighbor classifier, and an English cursive 
recognizer based on a neural network.  Comparing Figure 
4 and Figure 5, we can see that the training set size had a 
much larger impact in the nearest-neighbor classifier.  
This is because the classifier takes its prototypes directly 
from the training samples, with no smoothing or 
generalization to produce better prototypes, while the 
neural network is better able to generalize from a smaller 
training set.  We can also see that neither recognizer has 
stopped improving even with the large training sets we 
used, and that more data, possibly using a recognizer with 
greater representational power, will improve the accuracy 
further. 
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