

The Effect of Large Training Set Sizes on
Online Japanese Kanji and English Cursive Recognizers

Henry A. Rowley Manish Goyal John Bennett
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

hrowley@microsoft.com mango@microsoft.com jbenn@microsoft.com

Abstract

Much research in handwriting recognition has
focused on how to improve recognizers with constrained
training set sizes. This paper presents the results of
training a nearest-neighbor based online Japanese Kanji
recognizer and a neural-network based online cursive
English recognizer on a wide range of training set sizes,
including sizes not generally available. The experiments
demonstrate that increasing the amount of training data
improves the accuracy, even when the recognizer’s
representation power is limited.

1. Introduction

An important question when building a handwriting
recognition system is how much training data to collect.
Because of limits on available data sets, most researchers
have focused on developing algorithms that generalize
better from small data sets. This paper looks at the effect
of increasing the training set size beyond those generally
available for online Japanese Kanji and English cursive
recognizers.

The Japanese recognizer uses a nearest-neighbor
classification scheme. Each character to be recognized is
first converted to a feature vector and its distance to every
stored prototype is computed. The prototype labels are
the outputs of the system, and the distances are used as
scores for each character. Each score is adjusted to take
into account such things as the frequency of the character
in natural text, and the position at which it was written in
the writing box. Training of the recognizer involves
choosing the distance metric and the subset of the training
samples to be used as prototypes.

The English cursive recognizer uses a Time Delayed
Neural Network (TDNN). It can be used to recognize
isolated words written either in print or in cursive. The
input ink is first segmented and featurized and then fed to
the neural net. The neural network outputs are in the form
of a sparse matrix of character probabilities. This matrix
then goes through a post-processing step which uses a
language model to arrive at the final result.

Both of these recognizers were trained with a wide
range of training set sizes. Since training a recognizer
with a large capacity on a small amount of data can result
in overtraining, we also varied the representation power
of the recognizers. The results show that increasing the
amount of training data increases the accuracy, assuming
that the recognizer’s representation power is not too
severely limited.

We will begin by describing the Japanese recognizer
in more detail, followed by the experiments conducted
with its training set. We then discuss the English
recognizer and its results with different size training sets.

2. Online Japanese Kanji recognizer

The Japanese recognizer used for the experiments in
this paper is designed to recognize characters in the JIS-
208 character set which are written with three or more
strokes. It has three main components: a procedure for
converting the input strokes to feature vectors, a distance
metric for comparing feature vectors, and a database of
prototypes against which the input is compared. Each of
these pieces will be described in more detail, followed by
descriptions of the experiments.

2.1. Feature Vectors

The strokes of ink are first scaled and shifted
horizontally and vertically to fill a fixed square box. The
strokes are then smoothed to remove noise from the
digitizer, and split at cusps and inflection points. Each
resulting stroke fragment is classified into one of nine
categories, as illustrated in Figure 1.

Some categories allow the stroke fragments to be
written in both directions, while others separate the
different writing directions into different categories. The
two curved categories allow the fragment to start and end
at any location in the writing box, as long as the direction
(clockwise or counter-clockwise) matches the category.
The last two right-angled categories are special cases of
the curves, which only match upper-right and lower-left
corners. Each category is further split into two smaller

Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR’02)
0-7695-1692-0/02 $17.00 © 2002 IEEE

categories, based on whether the size of the fragment is
larger or smaller than a fixed fraction of the total
character size. The stroke smoothing, fragmentation, and
categorization are implemented using a hand-built finite
state machine, some details of which are described in
Reference [3].

Figure 1. Illustration of the nine main feature
categories. For each category shown, there are
large and small versions, used when the fragment
length is larger or smaller than a fixed fraction of
the overall character size.

In addition to the category label, each stroke
fragment is also represented by the positions of its start
and end points, which are quantized to 16 levels in the
horizontal and vertical directions. The fragment
categories and start and end points are stored in the order
in which they were written, yielding the feature vector
used by the rest of the system. Similar sets of features
have been used for example by Reference [2].

2.2. Distance Metric

Since we are using a nearest-neighbor classifier, we
need a way to measure the closeness of two feature
vectors of the type described in the previous section. We
will first look at measuring the distance between two
fragments.

For the fragment start and end points, we begin by
computing the sum of the squared Euclidean distances
between the corresponding start and end points of the two
fragments. Because of the quantization of the coordinates
of the start and end points, there is a small range of values
for this distance measure. We then go through the
training data, recording the frequency of a particular
distance arising from stroke fragments of two instances of
the same character relative to the frequency of that
distance between any pair of characters. A similar
probability table is built up for the categories of pairs of
fragments arising from the same character relative to pairs
of fragments from any characters. For more details of
how to compute these probability tables efficiently, see
Reference [6].

These two probabilities are converted to log
probabilities and added together (with a tuned weighting
factor), then the resulting scores are added for all
fragments. This gives the distance measure between two
feature vectors. This distance metric can only be
computed between samples written with the same number
of stroke fragments.

2.3. Prototype Database

The final component of the recognizer is a database
of feature vectors, or prototypes, which represent the
shapes the recognizer should understand. These vectors
are selected from the training data in three main steps.
First, the distances between all pairs of samples of a given
character are computed. The samples are then ordered by
how many times they are the closest to another sample of
the same character. Samples with higher counts can be
viewed as more representative of other samples than those
with lower counts. The second stage goes through all the
samples in order, checking to see if they are recognized
correctly with the current prototype database (which is
initially empty) and adding them to the database if they
are not. This may result in overtraining, as large numbers
of outliers may be added to the database. The final stage
removes prototypes from the database, optimizing for
recognizer accuracy while fitting the database into a
specified memory budget. Since the running time of the
recognizer is roughly proportional to the number of
prototypes, this also impacts the recognizer speed.

2.4. Data Collection

The training data we will use for these experiments
consists of nearly five million samples of 6847 characters
in JIS-208 written with three or more strokes. This data
was collected over a period of several years from native
Japanese speakers. The data was collected on Wacom
tablets and the Fujitsu Stylistic 2300. The collection
mainly consists of natural text. Care has been taken to
ensure that rare characters also have a sufficient number
of samples for training. The data set has been
automatically and manually cleaned to ensure that the
label for each character matches what was actually
written.

2.5. Experiments

With the recognizer and training procedures in hand,
we can start to look at experiments with differing sizes of
training sets. As a first test, we extracted the 1012
characters from the training set that have 1000 or more
samples. We then trained recognizers on varying subsets
of this data, from 10 samples per character up to 1000, to
see how the accuracy changed. The test sets used for the
experiments are separate from the training set. The results
are shown in Figure 2 for two test sets, one that
approximates the natural frequency distribution (the
subset of the natural distribution contained in the 1012
characters selected earlier), and one approximating the
uniform distribution. As can be seen, the error rate drops
significantly as the amount of training data increases, and

Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR’02)
0-7695-1692-0/02 $17.00 © 2002 IEEE

is just beginning to level off at around 1000 samples per
character. The uniform error rate is lower than the natural
error rate, because the training data is uniformly
distributed.

Error Rate vs. Training Samples per Character

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

10 100 1,000

Training Samples per Character

E
rr

o
r

R
at

e
%

Natural

Uniform

Figure 2. Limited training and test sets to the
1012 characters for which we have 1000 training
samples, and trained with varying numbers of
samples per character. The natural test set
contained 79,747 samples, while the uniform test
set contained 35,096 samples.

In the second test, we trained the recognizer to handle
the full JIS-208 character set, and varied the upper limit
on the number of samples of each character. Since not all
characters are equally represented in the training data,
some characters will have fewer samples than the limit.
The results of this test are shown in Figure 3.

Error Rate vs. Training Samples per Character

0%

5%

10%

15%

20%

25%

10 100 1,000 10,000 100,000

Training Samples per Character

E
rr

o
r

R
at

e
%

Natural

Uniform

Figure 3. This test used the full JIS-208 character
set, with upper bounds on the numbers of
samples of each character. The natural test set
for this graph contained 85,655 samples, while
the uniform test set contained 156,826 samples.

Overall the error rates are higher, because the
recognizer now supports 6847 characters instead of 1012.
At small numbers of samples per character, the training
set is approximately uniformly distributed. However, as
the number of samples increases, only the most common

characters get more samples added to the training set, so
the training data distribution looks more like a natural
distribution. This is why initially the uniform test set
gives better scores, while the natural test set has better
scores at higher numbers of samples per character. In
fact, the uniform error rate suffers at higher numbers of
samples per character because the recognizer is placing
more weight on the common characters.

In the third experiment, we imposed some capacity
constraints on the recognizer’s prototype database. The
results are shown in Figure 4. Each curve in the graph
represents prototype databases of a fixed size trained with
varying numbers of samples per character, from 10 to
100,000. Database sizes are specified by a memory
budget. Each prototype occupies space proportional to
the number of stroke fragments it contains. A typical
640KB prototype database contains 21,000 prototypes.
The error rates are measured on the natural frequency test
set. From this graph we can see that increasing the
allowed prototype database size can have a significant
effect on the accuracy, decreasing the error rate from
8.25% to 5.55% when using all the training data. The
larger effect is that increasing the amount of training data
increases the accuracy, even for the smallest prototype
database size tested. Increased capacity helps most at the
highest numbers of samples per character, where the
curves begin to separate.

Error Rate vs. Training Samples per Character

0%

5%

10%

15%

20%

25%

10 100 1,000 10,000 100,000

Training Sam ples per Characte r

E
rr

o
r

R
at

e
%

 640KB

1024KB

2048KB

3072KB

4096KB

5120KB

Figure 4. Each curve represents a fixed prototype
database size (recognizer capacity), trained with
varying numbers of samples per character.
While increasing the capacity improves
accuracy, increasing the training data is much
more helpful. The error rate was measured on a
natural frequency test set containing 85,655
samples. Note that the error rates for the largest
database sizes almost overlap.

3. Online English Cursive Recognizer

The online English recognizer used for the
experiments in this paper is designed to recognize words.

Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR’02)
0-7695-1692-0/02 $17.00 © 2002 IEEE

The characters that make up these words are printable
ASCII and also include the euro and pound signs. The
main components of the recognizer are: a procedure for
converting the input strokes to feature vectors, a time
delayed neural network, and a post-processing step that
involves the use of a language model.

3.1. Feature Vectors

The ink to be recognized is first split into various
segments, by cutting the ink at the bottoms of the
characters. Segmentation thus takes place where the y
coordinate reaches a minimum value and starts to move in
the other direction. Similar methods for segmentation
have been proposed in References [5] and [7].

Each of the segments is then represented in the form
of a Chebyshev polynomial. More details on how these
polynomials are computed may be found in References
[1] and [4]. These feature vectors are then fed as inputs to
the neural network.

3.2. The Time Delayed Neural Network

The TDNN used for the recognizer is similar to the
one proposed in Reference [7]. The outputs from the
network form a sparse matrix of character probabilities
that undergo post processing by comparing with a
language model, before the final results are obtained.

3.3. Data Collection

A considerable amount of resources were devoted
towards collecting the data necessary for making this
study possible. Our training set has more than a million
words collected from native English speakers. It consists
of a mixture of natural text, punctuation, postal addresses,
numbers, and email and web addresses. Both print and
cursive data are used for training the recognizer. The data
set has been randomly sampled into smaller subsets to
produce the various data set sizes used for training the
different recognizers.

The testing set was collected in a manner similar to
that of the training set and consists of 150,495 words
(which contain 748,308 characters). The relative weighing
of the various sample types in the testing set has been
designed to closely approximate the user experience if the
user was to use handwriting as the primary method of
input to the computer.

3.4. Experiments

The training data for the recognizer is randomly
sampled and split up into smaller sizes. We have also

used various sizes of neural networks for the experiments
and have obtained accuracy numbers for different neural
net size against different training set sizes. The results of
these experiments are shown in Figure 5.

Error Rate (per word) vs. Training samples

10%

15%

20%

25%

30%

35%

40%

72,076 144,026 287,552 575,044 1,150,335

Number of Training Samples

E
rr

or
 R

at
e

%
 (p

er
 w

or
d

)

Neural Net with 11,965
weights

Neural Net with 26,930
weights

Neural Net with 47,860
weights

Neural Net with 95,725
weights

Figure 5. The effect of varying the training set
size on the error rate. Each curve is for a fixed
neural network size. We see that the error rate
drops as we increase the amount of training data.

As can be seen in the above graph, the error rate
decreases as the number of training samples increases.
Moreover it is seen that the effect of adding more data is
more pronounced as the size of the neural network
increases. When the network size is small the extra
amount of data does not make much of a difference, but
as the network size is increased the amount of training
data begins to make a significant impact. It also follows
from the above figure that for the same neural network
size, while increasing the amount of training data
increases the accuracy, the accuracy gains might not be
very high unless the complexity of the network itself is
increased.

4. Conclusions

This paper has presented the results of varying
training set sizes over a wide range for two different types
of recognizers, a Japanese Kanji recognizer based on a
nearest-neighbor classifier, and an English cursive
recognizer based on a neural network. Comparing Figure
4 and Figure 5, we can see that the training set size had a
much larger impact in the nearest-neighbor classifier.
This is because the classifier takes its prototypes directly
from the training samples, with no smoothing or
generalization to produce better prototypes, while the
neural network is better able to generalize from a smaller
training set. We can also see that neither recognizer has
stopped improving even with the large training sets we
used, and that more data, possibly using a recognizer with
greater representational power, will improve the accuracy
further.

Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR’02)
0-7695-1692-0/02 $17.00 © 2002 IEEE

5. Acknowledgements

The authors would like to thank Ahmad Abdulkader,
Angshuman Guha, Patrick Haluptzok, Greg Hullender,
Jay Pittman, Michael Revow, and Petr Slavik for
comments and suggestions on this paper.

6. References

[1] Adcock, James L. “Method and system for modeling
handwriting using polynomials as a function of time”, US
Patent 5,764,797, granted June 9, 1998.

[2] Chou, Sheng-Lin and Tsai, Wen-Hsiang. “Recognizing
Handwritten Chinese Characters by Stroke-Segment
Matching Using an Iteration Scheme”, in Character and

Handwriting Recognition: Expanding Frontiers, copyright
1991, pages 175-197.

[3] Dai, Xiwei. “Handwritten Symbol Recognizer”, US Patent
5,729,629, granted March 17, 1998.

[4] Guha, Angshuman. “A Uniform Compact Representation
for Variable Size Ink”, US Patent pending, 1998.

[5] Hollerbach, John M. “An Oscillation Theory of
Handwriting”, in Biological Cybernetics, copyright 1981,
pages 139-156

[6] Hullender, Gregory N. “Automatic Generation of
Handwriting Recognition Crossing Tables”, US Patent
6,094,506, granted July 25, 2000.

[7] Rumelhart, David E. “Theory to Practice: A Case Study-
Recognizing Cursive Handwriting”, in Computational
Learning and Cognition, Proceedings of the Third NEC
Research Symposium, copyright 1992, pages 177-196.

Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR’02)
0-7695-1692-0/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

