
EFFICIENT FACE ORIENTATION DISCRIMINATION

Shumeet Baluja1,2 Mehran Sahami1,3 Henry A. Rowley1
1Google, Inc.

2Robotics Institute, Carnegie Mellon University
3Computer Science Department, Stanford University

ABSTRACT
This paper presents efficient methods to address the
problem of discriminating between five facial orientations.
We present the most efficient methods for this task to date,
which can accurately discriminate between five facial
orientations with approximately 92% accuracy using fewer
than 30 pixel comparisons and greater than 99% accuracy
using 150 pixel comparisons. We achieve these rates by
using a boosting method to select from a large set of
extremely simple features. Comparisons to other methods
are given.

1. INTRODUCTION

The interest in face orientation discrimination arises from
two areas. First, the rapid increase in the availability of
inexpensive cameras makes it practical to create systems
that automatically monitor a person while using a
computer. By using motion, color, and size cues, it is
possible to quickly find and segment a person’s face when
he/she is sitting in front of a computer monitor. By
determining whether the person is looking directly at the
computer, or is staring away from the computer, we can
provide feedback to any user interface that could benefit
from knowing whether a user is paying attention or is
distracted (such as tutoring systems, computer games, or
even car-mounted cameras that monitor drivers).

Second, to perform accurate face detection for use in
video indexing or content-based image retrieval systems,
one approach is to design detectors specific to each face
orientation, as in [4][5][8][10]. Rather than applying all
detectors to every location and scale, a face-orientation
system can be applied to each candidate face location to
“route” the candidate to the appropriate detector, thereby
reducing the potential for false positives, and also
reducing the computational cost of applying every
detector. Note that efficiency in orientation detection is
paramount in these systems since every 20x20 sub-image
is first passed through an orientation determination system
before being passed to a face detection system. In typical
face detection systems, on the order of 106 sub-images (to
account for scaling by steps of 1.2) must be examined in a
single frame of 640x480 pixels [4].

1.1. The Dataset
The primary dataset that is used in this study is composed
of 20x20 pixel intensity images of faces. In each image,
the face is in one of five orientations: frontal, right half
profile, left half profile, right full profile or left full
profile, as shown in Figure 1. The right/left images are
mirrors of each other.

Figure 1: Examples of five faces in each orientation. First
row: frontal. Second row: right half profile. Third: left half
profile. Fourth: Right profile. Fifth: Left profile.

There are a total of 6,000 images for each orientation
(30,000 total images). 3000 randomly selected images are
used for training, and the remaining 27,000 are used for
testing. This is a fairly clean dataset derived from the
FERET database [11] with controlled lighting and the
faces tightly cropped in the image. The set includes
images that were synthesized from originals to add
variability through slight in-plane rotations and
translations. For each image, the pixel intensities were
scaled linearly to span between 0 and 255. This set was
originally used to train a face detection system [4]; for that
study, it was necessary to segment the face from the
background and replace the background pixels with
random noise, see [4] for details. This is important
because if the background is not replaced with noise, the
pose of the face in some of the images could be simply
determined by detecting the background (which is fairly
uniform in many of the original images). With noise in the
background, this task becomes both more realistic and
more difficult.

In the next section, we describe the algorithm and the
features used in detail. In Section 3, the results on the
face orientation discrimination problem are presented.
We also provide comparisons to other approaches and
show visual examples of the classifiers. Finally, in
Section 4, we close the paper with conclusions and
suggestions for future work.

2. ALGORITHMS AND FEATURES
The goal of this work is to make the process of orientation
discrimination as efficient as possible. Therefore, any of
the features that are used must be easy to compute. Our
approach is motivated by the work of [9], in which they
use an over-complete set of features based on rectangular
subregions which are efficiently computed from the
integral image for face detection.
 For this study, we use the simplest possible features,
relationships between pixels. For each pixel pair (i,j) we
effectively compute four binary features: (pixeli = pixelj),
(pixeli ≠ pixelj), (pixeli ≤ pixelj), (pixeli > pixelj). The
images that we use for this study are 20x20; but we need
not compare a pixel to itself. Therefore, this process
generates (20x20)*[(20x20)-1]*4=638,400 binary features
that can be computed for each of the training images. We
can easily reduce this set of features by a factor of 2 by
restricting ourselves to the upper-diagonal of the pair-wise
feature matrix. Further, due to symmetry, the classifier will
select either the feature F or ~F, so we can reduce the
feature set by another factor of 2. The final number of
features is 159,600. Nonetheless, this is still an extremely
large number of features to examine – far larger than the
number of pixels in each 20x20 sub-image. The goal,
given this large set of features, is to minimize the number
of features that need to be computed when given a new
image, while still achieving high discrimination rates.
 In many studies, the task of feature selection is used
as a pre-processing step to creating a classifier; a summary
of the results with these approaches will be given in the
next section. The approach that we take here is to use the
AdaBoost learning algorithm in one of its simplest forms
[6][9]; AdaBoost can be used to combine the feature
selection and classifier training steps. The key idea behind
AdaBoost is that a strong classifier can be created by
combining many weak classifiers (classifiers that may only
classify the training samples correctly just over 50% of the
time). At each step, after the weak classifier is selected
and applied, the misclassified samples are re-weighted so
that the next classifier puts more emphasis on solving the
incorrectly labeled samples. The final strong classifier is a
weighted combination of the weak classifiers.
 There are two challenges to using this approach.
First, we only want to use a small set of features –
computing all 159,600 binary features to classify a new
image would be computationally prohibitive. Second, the

combination of these features (the learner) must be cheap
to compute, since potentially many learners will be used.
As in [9], we limit the weak classifiers that AdaBoost can
use in creating a strong classifier to single features;
however, here the features are restricted to represent the
relationship between two pixels. The classifier can only
choose to use the feature F or its complement, ~F. No
transformation of the features can be used. Enforcing this
limitation has two benefits; first, it is cheap to compute,
and second, at each step in the boosting procedure only a
single new feature needs to be computed.

Given example images (x1,y1) .. (xn,yn) where yi = 0,1 for
negative and positive examples.

Initialize weights w1,i = 1/2N, 1/2P for yi = 0,1 respectively,
where N & P are the number of negative and positive samples.

For t = 1,…,T (maximum # of features to use):
 1. Normalize weights wt,i such that Σi wt,i = 1.0
 2. For each feature, Fj, see how well it (or ~Fj) predicts the
classification. Measure the error with respect to the weights wt:
errort = Σi wt,i | Fj – yi | or errort = Σi wt,i | ~Fj – yi |
 3. Choose the feature (Fj (or ~Fj)) with the lowest errort.
 4. Update the weights:
 if example is classified incorrectly:
 wt+1,i = wt,i
 else
 wt+1,i = wt,iBt

 where
 Bt =

t

t

error-1
error

For binary classification, the output of the strong classifier is:

��

�
�

� ≥ ��
==

otherwise:0

)(log5.0)(F*)(log:1 :)S(

T

1t
B
1

T

1t
tB

1
tt

xx

where Ft(x) is the value of feature Ft computed for instance x.

Figure 2: A boosting algorithm (taken from [9]). Note that
the “classifier” used here is simply the feature (or ~feature)
itself. The final classifier outputs a weighted combination of
the classifiers (in this case just feature F or ~F).

 An instance of the AdaBoost algorithm is shown in
Figure 2; it is shown for a binary classification problem.
To compare the outputs of multiple classifiers, instead of
using a simple 0,1 output, the final classification was taken
to be the maximum of the normalized outputs for each of
the classifiers:

)(log

F *)(log

T

1t
B
1

T

1t
tB

1

t

t

�

�

=

=

3. RESULTS

Using the AdaBoost algorithm described in the previous
section, five separate strong classifiers were built. Each
classifier was trained to discriminate images in a given
class from images in every other class. AdaBoost was run

until 500 features were selected for each classifier
(T=500). A test image is then assigned to the class
corresponding to the strong classifier with maximal output.
The results are shown in Figure 3. Note that with just 6
features per strong classifier, we achieve over 90%
classification accuracy on the test set. By using 30
features per strong classifier, 99% accuracy is achieved1.

We also consider a variant of the AdaBoost algorithm
to speed training. With the original AdaBoost algorithm,
at each iteration, approximately 159,600 features must be
examined. However, in an image, many pixels may
contain redundant information. It may be possible to only
examine a small number of these features and achieve the
same results. To test this hypothesis, in each round of
AdaBoost, instead of looking at all the possible features,
P% were randomly selected to be examined; the weak
classifier could only be selected from this restricted set. In
subsequent rounds, the set was again randomly selected.
Several settings of P were tried: 1%, 5%, 10%, 50% and
100%. Setting P=100% corresponds to the original
AdaBoost algorithm. Setting P=1% means that at each
iteration, on average, only 1% of the total features are
candidates for selection. As can be seen in Figure 3, the
results are close for the settings of P tried. Note that P has
a linear relation to the training time (P=1% is
approximately 100 times faster than P=100%).

Because the features that are used are simple pixel
comparisons, it is easy to visually examine the features
that are used. A detailed look at the top 5 features that
were selected for use by the frontal face pose classifier is
shown in Figure 4. The first feature selected assumes
that the space between the eyes will be brighter than
directly below the nose. The feature works well for
frontal faces as this is often the case. However, in all of
the other orientations, it is often the case that the pixel
location that should be bright falls on an eye, and is
therefore relatively dark. Therefore, it is a good
discriminatory feature.

3.1. Alternate Approaches

We compare the results obtained with AdaBoost with
those obtained from a number of standard machine
learning and feature reduction approaches. To build
efficient classifiers, feature reduction is essential when
employing classification schemes that will use all of the
features given. A short summary of the alternate
approaches compared is given here.

1 Since there are 5 strong classifiers (one for each class) we
conservatively assume that each classifier uses different pixels.
Therefore, for achieving an accuracy of 90%, 30 total features
are used, for an accuracy of 99%, 150 total features are used.

Error vs. Number of Features for Each Classifier

0.001

0.01

0.1

1
1 11 21 31 41

Error vs. Number of Features for Each Classifier

0.001

0.01

0.1

1
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481

1% Features 5 % Features 10% Features 50% Features 100% Features
Figure 3: AdaBoost error rate vs. # of features used in each
classifier. Note that five settings of P were examined. Top:
First 50 features selected. Bottom: Full view of 500 features
selected. This is the average of 5 trials per setting.

We perform feature selection by computing the mutual
information [1] between each of the 159,600 original
features and the class label (C), selecting the top scoring
features to build an efficient classifier. The mutual
information score MI(Fi; C) is given by:

� �=
iF C

i

i
ii FPCP

FCP
FCPCFMI

)()(
),(

log),();(

In the reduced feature space, we employ the Naïve
Bayesian classifier (NB) [2], limited-dependence Bayesian
classifiers [7] (using both 1 (KDB-1) and 2 (KDB-2)
dependence models) and Support Vector Machines [3]
with both linear (SVM-l) and quadratic (SVM-q) kernels.

Naïve Bayes defines a linear separator yielding a
predicted class Cpred as:

)(log)|(logmaxarg CPCFPC
iF iCpred += �

Limited-dependence classifiers allow for a non-linear
classifier where the predicted class Cpred is given by:

)(log),|(logmaxarg CPCFPC
iF ijiCpred += � F

where Fij is a set of at most 1 or 2 features that have
greatest class conditional mutual information with feature
Fi. Such dependency modeling helps to overcome the
limitations of Naïve Bayes.

Since SVMs are binary classifiers we use the same
one-vs-rest classification approach we use with AdaBoost.
Features are selected and a binary classifier built for each
class separately. Each test instance is classified into the
category for which it gets the maximal score over all
binary classifiers; this approach parallels the one used for
the boosting classifier.

We ran each of the classifiers described above on the
same training/testing data split used with AdaBoost and
the results are given in Table 1. For each number of
features, AdaBoost outperforms all other classifiers. For
AdaBoost (with P=100%), at 2500 features (500 features
per class) the accuracy was 99.7%, at 150 features (30
features per class) the accuracy was 99.0%, and at 30
features (6 features per class) the accuracy was 92%.

Feat NB KDB-1 KDB-2 Feat/class SVM-l SVM-q
2500 97.53 94.74 98.27 500 99.04 99.14
150 94.78 95.51 92.51 30 94.45 94.96
30 77.62 80.99 82.64 6 81.73 79.41

Table 1: Classification accuracy (classifier vs. # of features).

More features could potentially lead to slight gains in
accuracy for the compared methods. However, the
resulting classifiers would be much more expensive to
apply. Since the primary motivation for our work is
building a classifier that is efficient to apply in practice,
using a classifier that utilized many thousands of features
during classification would be cost prohibitive.
Furthermore, just comparing the number of features is a
bit deceptive; it should be noted that applying the best
performing of the compared methods, SVMs, requires
time that is linear in both the number of features as well as
the number of support vectors (which we often found to be
on the order of 100s)2. Consequently, such a method can
be hundreds of times more expensive to apply than
AdaBoost even when using the same number of features.

4. CONCLUSIONS
This paper makes several novel contributions, including
demonstrating the power of even very simple pixel
comparisons. The final system discriminates between 5
face orientations with accuracies over 99% with only 150
pixel comparisons. This approach yields the simplest and
most efficient system to date for this task.

2 For completeness, we also tried using SVMs with RBF Kernel
Functions directly on the pixel images. This yielded accuracy
comparable to the best Adaboost procedure. However, the SVM
chose 350 support vectors per pose; which would yield a
classifier slower by several orders of magnitude.

 We are extending this work first by further exploring
the tradeoffs between feature expansion, efficient
classification, and classifier complexity. Second, we are
extending this work to more complex datasets, such as
those in gender determination, within the face domain as
well as other domains.

5. REFERENCES
[1] T. Cover and J. Thomas (1991) Elements of Information
Theory.
[2] I. Good (1965) The Estimation of Probabilities: An Essay on
Modern Bayesian Methods.
[3] T. Joachims (1999) Making large-Scale SVM Learning
Practical. Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf and C. Burges and A. Smola (ed).
[4] H. Rowley (1999) Neural Network-Based Face Detection,
Ph.D. Thesis Carnegie Mellon University, CMU-CS-99-117.
[5] H. Rowley, S. Baluja and T. Kanade (1998) “Neural
Network-Based Face Detection”. IEEE-PAMI v20, pp 22-38
[6] R. Schapire, Y. Freund, P. Bartlett, W. Lee (1997),
“Boosting the Margin: A New Explanation for the effectiveness
of voting Methods”, ICML-1997.
[7] M. Sahami (1996) “Learning Limited Dependence
Classifiers”, KDD 1996.
[8] K. Sung & T.Poggio (1998), “Example-based learning for
view-based face Detection”, IEEE-PAMI, v20, pp. 39-51.
[9] P. Viola and M. Jones (2001), “Robust Real-Time Object
Detection”, 2nd Int. Wkshp on Stat. & Comp. Theory of Vision.
[10] M. Jones and P. Viola (2003), “Fast Multi-View Face
Detection”, Mitsubishi Electric Research Lab TR-20003-96.
[11] P. Phillips, H. Wechsler, J. Huang, P. Rauss (1998) “The
FERET database and evaluation procedure for face-recognition
algorithms”, Image and Vision Computing, 16 (5):295-306.

Figure 4: The first 5 features selected by the frontal face
classifier. The pixel under the white cross has to be brighter
than the pixel under the black cross. Each feature is shown
where it would fall on a face in each orientation. Top Row:
First five features overlaid on frontal face image. Second
Row: First five features overlaid on right half profile, etc.

