
GRAPH-BASED SHAPE MATCHING FOR DEFORMABLE OBJECTS

Hanbyul Joo*, Yekeun Jeong†, Olivier Duchenne‡, In So Kweon†

*Electronics and Telecommunications Research Institute, Korea
‡INRIA / ´ Ecole Normale Sup´ erieure, Paris, France

†KAIST, Korea

ABSTRACT

In this paper, we propose a graph-based shape matching
method for deformable objects. In our approach, a graph is
generated from an over-segmented input image, and a shape
matching problem is treated as finding a optimal cycle in the
graph. Given a shape template and a graph generated from the
input, a product graph is generated to consider every possible
correspondences between graph edges and template sub-
parts. Because the proposed approach can estimate correct
correspondences between a target object and a template, the
target object can be found robustly in the presence of shape
deformation and background clutter. The experiments on var-
ious examples are also presented to verify the performance of
the proposed method.

Index Terms— Shape matching, 2D shape, deformable
shape

1. INTRODUCTION

Outline shape information plays an important role to solve
the object detection and segmentation problems which are the
fundamental problems in the computer vision area. By con-
sidering outline of the objects, it is possible to extract the ex-
act object boundary from the background clutter. However,
finding objects using shape information is still a challenging
problem because of following reasons. Firstly, because of the
background clutter, it is hard to find correct object outline to
compare the shape differences with the template. Secondly,
shape deformation also makes the matching harder because
local shape could be changed dramatically.

Shape based approaches have been treated as a template
matching problem in some approached [1, 2]. In those ap-
proaches, the whole outline shape of an object is used for
prior information, and the most similar shape is detected us-
ing difference costs, such as Chamfer measurement. However,
because the templates are rigid form, multiple templates are
required to handle shape variances in case of the deformable
objects. In the other approaches, researchers tried to solve
this problem using multiple sub-part template [3]. In these
approaches, a set of contour fragments generated by learn-
ing datasets are used to detect objects by combining those

sub-part templates. According to the arrangement of the part
templates, these approaches can handle object deformation.
However, these works depends on the local matching of the
small template fragments which could not be sufficiently dis-
tinctive. Thus, generating part templates is an important issue
in those approaches. If the template fragments are too small,
the local matching results have low confidence. On the other
hand, if the fragments are too large, it could not be general to
cover the object deformation.

In recent works, shape based object matching combin-
ing bottom-up approaches are proposed [4, 5]. In those ap-
proaches, an input image is divided into small homogeneous
regions, and the target object is extracted by piecing together
the small regions using shape information. Because bottom-
up approaches merge small homogeneous object pixels into a
single segment using low-level cues, these approach have an
advantage finding important object details.

In our approach, instead generating a group of the small
fragments template by learning prior datasets, whole outline
is used as a single template. Additionally, against to the previ-
ous single template based approaches, our algorithm estimate
the correct correspondences between the object edges and the
template. According to handle the variety of shape deforma-
tion. We treat this shape matching problem as an graph-based
problem by generating a graph from the over-segmented im-
age. In the end, by finding the shortest cycle in the whole
possible cycle, our algorithm successively find the interested
object from complex background clutter.

2. GRAPH BASED SHAPE MATCHING

The proposed method is composed of four steps: 1) over-
segmentation for an input image; 2) graph generation from the
over-segmented image; 3) product graph generation by com-
bining the possible matching between the generated graph
edges and template sub-parts; 4) optimal matching search us-
ing shortest cycle algorithm.

2.1. Graph Generation using over-segmented Image

Given an input image I, an over-segmentation algorithm is
performed to divide the image into small homogeneous re-

Fig. 1. Over-segmentation and graph generation. (a) input im-
age I (b) over-segmentation result (c) examples of nodes and
edges (d) generated image graph GI(V,E).

gions. The over-segmentation result has several benefits for
the shape matching: all edges are linked so that we can find
closed loop to extract the target object, we can consider group
of edge pixels together not the single edge pixel.

An undirected graph from the over-segmented image can
be generated by considering connected edge pixels between
two different segment as an edge of the graph. To generate
undirected graph GI(V,E), we define the node set, V, which
elements are the points at which three or more segments meet.
Also, we define a set of edge, V, which elements are the con-
nected edge line between two graph nodes. From now on, we
use the term ‘image graph’ to refer this graph generated from
over-segmentation to avoid the confusion with product graph
which will be explained in next subsection. The examples of
node and edge are shown in Fig. 1 (c), and the generated graph
is shown in Fig. 1 (d).

2.2. Product Graph Generation

To compare the shape differences, we have to find the cor-
respondences from image graph edges to template sub-parts.
However, it is hard to find correct correspondences because
the image graph edges are not sufficiently long nor distinc-
tive. For example in Fig 2, an edge epq ∈ E, which is the
edge between vp and vq ∈ V , could be possibly matched to
the position a, b, and c or any other position when we find the
correspondense locally.

Fig. 2. Matching candidates between an image graph edge
and template sub-parts

To consider all possible correspondences all together, we
generate a product graph which edge is a matching between
an image graph edge and a sub-part of the template. Formally,
the node of product graph is defined by Cartesian product be-
tween the node V of GI(V,E) and S which is the set of the
sample points in template (shown as black dots on the tem-
plate in Fig 2):

V Pr = {vPr(vi, sj)|where vi ∈ V and sj ∈ S}. (1)

The edge between two nodes of the product graph means a
correspondence between an image graph edge and a template
subpart. For example, when we think an edge between two
nodes vPr(vp, si), v

Pr(vq, sj) ∈ V Pr, it means the corre-
spondence between edge epq ∈ E and tij which is the shorter
template sub-part connecting two sample points, si and sj ,
along the template shape. Formally, a set of the edge of prod-
uct graph is defined as follows:

EPr = {ePr
(vp,si)→(vq,sj) | vPr(vp, si)→ vPr(vq, sj)}

where, epq ∈ E
| epq | −t <| tij |<| epq | +t.

(2)
Here, | · | means the length of the edge or template subpart,
and t is a constant value to allow length variance. That is,
the edge of the product graph is defined only if epq ∈ E
and tij has similar length to epq within allowed variance.
Fig. 3 shows examples of defined nodes and edges of the
product graph. In this example, when we think an edge
epq ∈ E, we can define product graph edges with some
length allowance t; ePr

(vp,s1)→(vq,s3), e
Pr

(vp,s1)→(vq,s4),
and ePr

(vp,s1)→(vq,s5).

2.3. Weight Definition

The weight of an product graph edge is defined by the
weighted sum of four costs; shape difference cost, global
position difference cost, and edge length difference cost, and
edge strength cost as follows.

Fig. 3. Examples of the edges and nodes of product graph

w(ePr
(vp,si)→(vq,sj)) =

(
α · Cshape(epq, tij)

+β · Cpos(epq, tij)
+γ · Cleng(epq, tij)

+δ · Cstr(epq)

)
× |tij |

|T | .

(3)

The shape difference cost, Cshape(epq, tij), is defined
using Chamfer distance [1] between corresponding parts con-
sidering correct orientation. And, Cpos(epq, Tij) measures
relative position difference from the pivot point similar to [3].
That is, a pivot is selected in original graph(the center of
the image for example), and the corresponding pivot is also
estimated on template image. And, for the matched position
and orientation of each image edge on the template sub-part,
a saved relative position toward pivot point is voted. Finally,
Cpos(epq, Tij) is defined the distance between voting point
and estimated pivot as the example shown in Fig. 4.

Cleng(epq, Tij) measure length difference between corre-
sponding parts. And the final cost, Cstr(epq), measures the
strength of image graph edges which prefers strong edges.
The final term is the ratio of the length of compared template
sub-part over the length of whole template. We applied this
term to normalize according to the edge length. And, α, β, γ,
δ is constant weights for each cost function.

2.4. Shape matching using Shortest Cycle Algorithm

In product graph, an edge means the correspondence between
an image graph edge and a template sub-part. Thus, a path(or
cycle) of the product graph means the correspondence be-
tween a path(or cycle) of the image graph and larger sub-
parts(or whole) of template. Thus, the cost of the cycle means
the shape difference cost between an closed region on the im-
age and whole template. That is, our purpose is treated finding
shortest cycle in the product graph.

To reduce search space in the product graph, we select a
set of the meaningful initial product edges which have strong
strength, large length, and small weight. We select sufficiently
large number of them so that they include at least one correct
correspondence. Also, by these initial correspondences, we

Fig. 4. Definition of the Cpos(epq, Tij)

estimate pivot position in the template image, and the Cpos of
the other edges are calculated from this estimated pivot point.

For each selected initial product edge, we find a shortest
path from the one node to the other node. Finally, the cycle
which has shortest cost is selected as the final matching result
among all shortest cycle of each inital matching. The detail
algorithm is explained in 1.

Algorithm 1: Shortest Cycle Algorithm using Dijkstra
Shortest Path

Input: GPr(V Pr, EPr) and selected initial product
graph edges

Output: Shortest cycle among all cycle from the initial
edge

optimalCycle.cost =∞;
foreach selected initial edge ePr

(vp,si)→(vq,sj) do
shortPath = Dijkstra(vPr(vq, sj),vPr(vp, si));
shortCycle = shortPath + ePr

(vp,si)→(vq,sj);
if optimalCycle.cost < shortCycle.cost then

optimalCycle = shortycle;

3. EXPERIMENTAL RESULT

In order to evaluate our method, we carried out experiments
using different deformable objects in several images. The ob-
jects used for experiments are highly deformable, and the test
images are taken with complex background clutter as shown
in Fig. 5 and 6. In Fig. 5, a segmentation output and the match-
ing result to a shape template are shown. Fig. 5 (a) is an orig-
inal image with a deformed object, and Fig. 5 (b) is a shape
template with sampling points(red dots). Fig. 5 (c) and (d)
shows the final matching result between image graph edges
and template sub-parts estimated by shortest cycle of product
graph. Here, the thick red line (directed by arrow) is the ini-
tially selected one, and the path is extracted from this edge.

Fig. 5. Final matching result. (a) input image (b) shape tem-
plate with sampling points (c)(d) final matching results ex-
tracted by proposed shortest cycle algorithm.

Fig. 6. Experimental results on various examples. (Top row)
templates for each object (Left Column) input images (Mi.
column) Results using proposed algorithm (Right Column)
results using [4]

The yellow dot in Fig. 5 (c) center is an original pivot point,
and we colored each voting point with same color of each
matched edge in Fig. 5 (d). Most of the voting points are con-
verged to relatively similar position of original pivot point.
Only some points voted by largely deformed edges are lo-
cated different position which makes the Cpos slightly large.
The other variety experimental results are shown in Fig. 6
which using only single template for each test. For the com-
parison, right columns in Fig. 6 shows the results using [4]
with same single template. Our results show that the proposed
algorithm works properly for the highly deformable examples
with background clutters.

We also applied our algorithm on the starfish examples
of ETHZ shape dataset [6]. The results are shown in Fig. 7
with matching results. In this experiments, even if the shape
of the objects are quite different with the template shape, our
algorithm produced reasonable results.

4. CONCLUSION

In this paper, a graph based shape matching algorithm for
deformable objects is proposed. Given a shape template and
an graph generated from input, a product graph is generated
to consider every possible correspondences between graph
edges and template sub-parts altogether. The matching cost
is calculated using shape properties such as contour differ-

Fig. 7. Experimental results on starfish images (Top row) a
template (a) input images (b) final matching results (c) final
segmentation results

ence, and relative position difference. Finally, both the most
similar shapes in the image is founded by proposed shortest
cycle search algorithm. The experiments on various examples
demonstrate that our approach is able to produce accurate seg-
mentations and matching in the presence of shape deforma-
tion and complex background clutter.

5. REFERENCES

[1] G. Borgefors, “Hierarchical chamfer matching: A para-
metric edge matching algorithm,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 10, no. 6,
pp. 849–865, 1988.

[2] A. Thayananthan, B. Stenger, PHS Torr, and R. Cipolla,
“Shape context and chamfer matching in cluttered
scenes,” in Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Con-
ference on, 2003, vol. 1.

[3] A. Opelt, A. Pinz, and A. Zisserman, “A boundary-
fragment-model for object detection,” in Computer
Vision–ECCV 2006. 2006, pp. 575–588, Springer.

[4] T. Cour and J. Shi, “Recognizing objects by piecing to-
gether the segmentation puzzle,” in Computer Vision and
Pattern Recognition, 2007. CVPR’07. IEEE Conference
on. IEEE, 2007.

[5] H. Joo, Y. Jeong, O. Duchenne, S.Y. Ko, and I.S. Kweon,
“Graph-based robust shape matching for robotic applica-
tion,” in Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, 2009, pp. 1207–1213.

[6] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Object detec-
tion by contour segment networks,” in Computer Vision–
ECCV 2006, 2006, pp. 14–28.

