Autograph
Toward Automated, Distributed Worm Signature Detection

Hyang-Ah Kim
Carnegie Mellon University

Brad Karp
Intel Research &
Carnegie Mellon University

Usenix Security 2004
Internet Worm Quarantine

- Internet Worm Quarantine Techniques
 - Destination port blocking
 - Infected source host IP blocking
 - Content-based blocking [Moore et al., 2003]

- Worm Signature

Signature for CodeRed II

Signature: A Payload Content String Specific To A Worm
Content-based Blocking

Signature for CodeRed II

- Can be used by Bro, Snort, Cisco’s NBAR, ...
Signature derivation is too slow

- **Current Signature Derivation Process**
 - New worm outbreak
 - Report of anomalies from people via phone/email/newsgrp
 - Worm trace is captured
 - Manual analysis by security experts
 - Signature generation

 ⇒ Labor-intensive, Human-mediated
Goal

Automatically generate signatures of previously unknown Internet worms

- as accurately as possible
 ⇒ Content-Based Analysis

- as quickly as possible
 ⇒ Automation, Distributed Monitoring
Assumptions

- We focus on TCP worms that propagate via scanning

 Actually, any transport
 - in which spoofed sources cannot communicate successfully
 - in which transport framing is known to monitor

- Worm’s payloads share a common substring
 - Vulnerability exploit part is not easily mutable
 - Not polymorphic
Outline

- Problem and Motivation
- Automated Signature Detection
 - Desiderata
 - Technique
 - Evaluation
- Distributed Signature Detection
 - Tattler
 - Evaluation
- Related Work
- Conclusion
Desiderata

- Automation: Minimal manual intervention

- Signature quality: Sensitive & specific
 - Sensitive: match all worms \Rightarrow low false negative rate
 - Specific: match only worms \Rightarrow low false positive rate

- Timeliness: Early detection

- Application neutrality
 - Broad applicability
Automated Signature Generation

- Step 1: Select suspicious flows using heuristics
- Step 2: Generate signature using content-prevalence analysis
S1: Suspicious Flow Selection

Reduce the work by filtering out vast amount of innocuous flows

- **Heuristic:** Flows from scanners are suspicious
 - Focus on the successful flows from IPs who made unsuccessful connections to more than s destinations for last 24 hours
 - Suitable heuristic for TCP worm that scans network

Autograph ($s = 2$)

- Non-existent
- Non-existent

This flow will be selected
S1: Suspicious Flow Selection

Reduce the work by filtering out vast amount of innocuous flows

- **Heuristic:** Flows from scanners are suspicious
 - Focus on the successful flows from IPs who made unsuccessful connections to more than S destinations for last 24 hours
 - Suitable heuristic for TCP worm that scans network

- **Suspicious Flow Pool**
 - Holds reassembled, suspicious flows captured during the last time period t
 - Triggers signature generation if there are more than θ flows
S2: Signature Generation

Use the most frequent byte sequences across suspicious flows as signatures

All instances of a worm have a common byte pattern specific to the worm

Rationale
- Worms propagate by duplicating themselves
- Worms propagate using vulnerability of a service

How to find the most frequent byte sequences?
Worm-specific Pattern Detection

- Use the entire payload
 - Brittle to byte insertion, deletion, reordering

<table>
<thead>
<tr>
<th>Flow 1</th>
<th>GARBAGEEABCDEFGHIJKLMNOPQRSTUVWXYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow 2</td>
<td>GARBAGEABCDEFGHIJKLMNOPQRSTUVWXYZ</td>
</tr>
</tbody>
</table>
Worm-specific Pattern Detection

Partition flows into non-overlapping small blocks and count the number of occurrences

- Fixed-length Partition
 - Still brittle to byte insertion, deletion, reordering

<table>
<thead>
<tr>
<th>Flow 1</th>
<th>Flow 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARBAGEEABCDEFGH</td>
<td>GARBAGEA</td>
</tr>
<tr>
<td>IJKABCDXXXX</td>
<td>ABCDEFGHIJKABCD</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
</tr>
</tbody>
</table>
Worm-specific Pattern Detection

- **Content-based Payload Partitioning (COPP)**
 - Partition if Rabin fingerprint of a sliding window matches Breakmark → **Content Blocks**
 - Configurable parameters: content block size (minimum, average, maximum), breakmark, sliding window

![Diagram showing content blocks and breakmark with examples of Flow 1 and Flow 2]

Flow 1: AGEEABCD
Flow 2: GARBAGEABCD

Breakmark = last 8 bits of fingerprint (ABCD)
Why Prevalence?

Prevalence Distribution in Suspicious Flow Pool
- From 24-hr http traffic trace

- Worm flows dominate in the suspicious flow pool
- Content-blocks from worms are highly ranked
Select Most Frequent Content Block

f0: C F
f1: C D G
f2: A B D
f3: A C E
f4: A B E
f5: A B D
f6: H I J
f7: I H J
f8: G I J
Select Most Frequent Content Block

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f0</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>C</td>
<td>D</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>f2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>f4</td>
<td>A</td>
<td>B</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>f6</td>
<td>B</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td>f7</td>
<td>B</td>
<td>I</td>
<td>H</td>
<td>J</td>
</tr>
<tr>
<td>f8</td>
<td>B</td>
<td>G</td>
<td>I</td>
<td>J</td>
</tr>
</tbody>
</table>

| | | | |
|---|----|----|
| f0 | C | F |
| f1 | C | D | G |
| f2 | A | B | D |
| f3 | A | C | E |
| f4 | A | B | E |
| f5 | A | B | D |
| f6 | H | I | J |
| f7 | I | H | J |
| f8 | G | I | J |
Select Most Frequent Content Block

Signature:

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

f0 C F
f1 C D G
f2 A B D
f3 A C E
f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I J

W≥90%
P≥3
Select Most Frequent Content Block

Signature: A

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

W ≥ 90%
P ≥ 3

<table>
<thead>
<tr>
<th>f0</th>
<th>C F</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>C D G</td>
</tr>
<tr>
<td>f2</td>
<td>A B D</td>
</tr>
<tr>
<td>f3</td>
<td>A C E</td>
</tr>
<tr>
<td>f4</td>
<td>A B E</td>
</tr>
<tr>
<td>f5</td>
<td>A B D</td>
</tr>
<tr>
<td>f6</td>
<td>H I J</td>
</tr>
<tr>
<td>f7</td>
<td>I H J</td>
</tr>
<tr>
<td>f8</td>
<td>G I J</td>
</tr>
</tbody>
</table>

Usenix Security 2004
Select Most Frequent Content Block

Signature: A

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

W ≥ 90%

P ≥ 3

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f0</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>C</td>
<td>D</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f4</td>
<td>A</td>
<td>B</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f5</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f6</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f7</td>
<td>I</td>
<td>H</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f8</td>
<td>G</td>
<td>I</td>
<td>J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Select Most Frequent Content Block

Signature: \(A \quad I \)

\[W \geq 90\% \]

\(W \): target coverage in suspicious flow pool

\(P \): minimum occurrence to be selected

<table>
<thead>
<tr>
<th>(f_0)</th>
<th>C F</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>C D G</td>
</tr>
<tr>
<td>(f_2)</td>
<td>A B D</td>
</tr>
<tr>
<td>(f_3)</td>
<td>A C E</td>
</tr>
<tr>
<td>(f_4)</td>
<td>A B E</td>
</tr>
<tr>
<td>(f_5)</td>
<td>A B D</td>
</tr>
<tr>
<td>(f_6)</td>
<td>H I J</td>
</tr>
<tr>
<td>(f_7)</td>
<td>T H I</td>
</tr>
<tr>
<td>(f_8)</td>
<td>G I T</td>
</tr>
</tbody>
</table>

\(P \geq 3 \)
Select Most Frequent Content Block

Signature: A I

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

<table>
<thead>
<tr>
<th></th>
<th>f0</th>
<th>f1</th>
<th>f2</th>
<th>f3</th>
<th>f4</th>
<th>f5</th>
<th>f6</th>
<th>f7</th>
<th>f8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>H</td>
<td>I</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>D</td>
<td>E</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>I</td>
<td>J</td>
<td>I</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>F</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>J</td>
<td>J</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W ≥ 90%
P ≥ 3
Outline

- Problem and Motivation
- Automated Signature Detection
 - Desiderata
 - Technique
 - Evaluation
- Distributed Signature Detection
 - Tattler
 - Evaluation
- Related Work
- Conclusion
Behavior of Signature Generation

- Objectives
 - Effect of COPP parameters on signature quality

- Metrics
 - Sensitivity = # of true alarms / total # of worm flows \Rightarrow false negatives
 - Efficiency = # of true alarms / # of alarms \Rightarrow false positives

- Trace
 - Contains 24-hour http traffic
 - Includes 17 different types of worm payloads
Signature Quality

- Larger block sizes generate more specific signatures
- A range of w (90-95%, workload dependent) produces a good signature
Outline

- Problem and Motivation
- Automated Signature Detection
 - Desiderata
 - Technique
 - Evaluation
- Distributed Signature Detection
 - Tattler
 - Evaluation
- Related Work
- Conclusion
Signature Generation Speed

- Bounded by worm payload accumulation speed
 - Aggressiveness of scanner detection heuristic
 - \(s \): # of failed connection peers to detect a scanner
 - # of payloads enough for content analysis
 - \(\theta \): suspicious flow pool size to trigger signature generation

- Single Autograph
 - Worm payload accumulation is slow

- Distributed Autograph
 - Share scanner IP list
 - Tattler: limit bandwidth consumption within a predefined cap
Benefit from tattler

- Worm payload accumulation (time to catch 5 worms)

<table>
<thead>
<tr>
<th>Info Sharing</th>
<th>Autograph Monitor</th>
<th>Aggressive $s=1$</th>
<th>Conservative $s=4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Luckiest</td>
<td>2%</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>25%</td>
<td>--</td>
</tr>
<tr>
<td>Tattler</td>
<td>All</td>
<td><1%</td>
<td>15%</td>
</tr>
</tbody>
</table>

- Signature generation
 - More aggressive scanner detection (s) and signature generation trigger (θ) \(\Rightarrow\) faster signature generation, more false positives
 - With $s=2$ and $\theta=15$, Autograph generates the good worm signature before < 2% hosts get infected

Many innocuous misclassified flows

Conservative $(s = 4)$

Aggressive $(s = 1)$

Fraction of Infected Hosts

Monitor Info Sharing

Many innocuous misclassified flows
Related Work

- **Automated Worm Signature Detection**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Generation</td>
<td>Content prevalence \rightarrow Address Dispersion</td>
<td>Honeypot + Pairwise LCS</td>
<td>Suspicious flow selection \rightarrow Content prevalence</td>
</tr>
<tr>
<td>Deployment</td>
<td>Network</td>
<td>Host</td>
<td>Network</td>
</tr>
<tr>
<td>Flow Reassembly</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Distributed Monitoring</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Distributed Monitoring**
 - Honeyd [Provos 2003], DOMINO [Yegneswaran et al. 2004]
 - Corroborate faster accumulation of worm payloads/scanner IPs
Future Work

- **Attacks**
 - Overload Autograph
 - Abuse Autograph for DoS attacks

- **Online evaluation with diverse traces & deployment on distributed sites**

- **Broader set of suspicious flow selection heuristics**
 - Non-scanning worms (ex. hit-list worms, topological worms, email worms)
 - UDP worms

- **Egress detection**

- **Distributed agreement for signature quality testing**
 - Trusted aggregation
Conclusion

- Stopping spread of novel worms requires early generation of signatures
- Autograph: automated signature detection system
 - Automated suspicious flow selection → Automated content prevalence analysis
 - COPP: robustness against payload variability
 - Distributed monitoring: faster signature generation
- Autograph finds sensitive & specific signatures early in real network traces
For more information, visit
http://www.cs.cmu.edu/~hakim/autograph
Attacks

- Overload due to flow reassembly

 Solutions
 ⇒ Multiple instances of Autograph on separate HW (port-disjoint)
 ⇒ Suspicious flow sampling under heavy load

- Abuse Autograph for DoS: pollute suspicious flow pool

 o Port scan and then send innocuous traffic
 Solution
 ⇒ Distributed verification of signatures at many monitors

 o Source-address-spoofed port scan
 Solution
 ⇒ Reply with SYN/ACK on behalf of non-existent hosts/services
Number of Signatures

- Smaller block sizes generate small # of signatures
A modified RTCP (RTP Control Protocol)

Limit the total bandwidth of announcements sent to the group within a predetermined cap

tattler
About 340,000 vulnerable hosts from about 6400 ASes

Service deployment
- 50% of address space within the vulnerable ASes is reachable
- 25% of reachable hosts run web server
- 340,000 vulnerable hosts are randomly placed.

Scanning
- 10 probes per second
- Scanning the entire non-class-D IP address space

Network/processing delays
- Randomly chosen in [0.5, 1.5] seconds