
Learning to Reweight Terms with Distributed
Representations

Guoqing Zheng
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

gzheng@cs.cmu.edu

Jamie Callan
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

callan@cs.cmu.edu

ABSTRACT

Term weighting is a fundamental problem in IR research and
numerous weighting models have been proposed. Proper
term weighting can greatly improve retrieval accuracies,
which essentially involves two types of query understand-
ing: interpreting the query and judging the relative contri-
bution of the terms to the query. These two steps are often
dealt with separately, and complicated yet not so effective
weighting strategies are proposed. In this paper, we pro-
pose to address query interpretation and term weighting in
a unified framework built upon distributed representations

of words from recent advances in neural network language
modeling. Specifically, we represent term and query as vec-
tors in the same latent space, construct features for terms
using their word vectors and learn a model to map the fea-
tures onto the defined target term weights. The proposed
method is simple yet effective. Experiments using four col-
lections and two retrieval models demonstrates significantly
higher retrieval accuracies than baseline models.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms

Algorithms, Experimentation

Keywords

Query term weighting, distributed representations, word
vectors

1. INTRODUCTION
Performance of text search engines relies heavily on query

understanding, of which one important problem is how to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR’15, August 09 - 13, 2015, Santiago, Chile.

c© 2015 ACM. ISBN 978-1-4503-3621-5/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2766462.2767700.

weight the contribution of each individual term to the re-
trieval score1. When proper weights (such as ground truth
term recall weights [22]) are used, they can boost retrieval
accuracies by up to 30% given relevance judgments. Prop-
erly setting the query term weights requires accurately in-
terpreting and properly representing the query first. This is
no easy task as query intent understanding itself is a diffcult
problem in IR research [7].

In this paper, we attempt to address query interpretation
and term weighing from a different angle, with a unified
framework built upon recent advances in neural network
language modeling [13, 3]. Recent research in the appli-
cation of neural network to text problems exploits the co-
occurrence of words to represent words by multidimensional
vectors. Distributed representations learned from neural
network based models [13, 3] are designed and shown to be
effective for measuring semantic similarity among words and
identifying similar neighbors for a given word. The mapping
from words to vectors gives the ability to not only measure
word-word similarity but also ways to represent the query
in the same vector space from word vectors from its terms
(such as taking the average of the word vectors of all terms
as the vector representation for the query).

As proper query term weights reflects the relative impor-
tance of the term with respect to the query, specifically we
propose to construct features from word vectors representa-
tions of terms and the query and to learn the relationship
between the feature vectors and target term weight (such as
the term recall weight [22] estimated from relevance judg-
ments). A regularized linear regression problem from the
feature vectors onto term weights is formulated and the pre-
dicted term weights are used for both bag-of-words queries
and term dependency queries. We demonstrate the effec-
tiveness of our method using two popular retrieval models,
four standard test collections, word vectors developed from
a variety of sources, and three baseline methods.

The contributions of our work are three fold. First, we
join the work of distributed word vectors to the prediction
of query term weights in IR, and propose a simple yet ef-
fective framework to predict effective term weights. Second,
we observe significant improvement over the baseline mod-

1People use “term weight” to describe two different settings:
one is the matching score a retrieval function assigns to a
term and a document pair; the other is the relative impor-
tance of the term to the query. The first setting is handled
by the retrieval model while the query model deals with the
second one; in this paper, we refer “term weight” or “term
reweighting” to that in the second setting.

575

els with two retrieval models over four standard collections
when using predicted term recall as term weights. Third, the
proposed method is much more efficient than previous work
on query term weight prediction, i.e., term recall weight,
which requires an initial retrieval and a local SVD for every
new incoming query to obtain features for predicting term
recall [22]. The proposed framework derives feature vectors
directly from precomputed distributed word vectors; simple
computations are sufficient for predicting term weights for
new queries.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces prior research related to query term weight-
ing and term recall weight. Section 3 discusses the pre-
liminaries for term recall prediction and distributed word
vectors. Section 4 formally presents our approach in term
weight modeling and estimation. Section 5 describes the
data sets and the experimental settings. Experimental re-
sults as well as data analysis are presented in Section 6. At
last, we conclude the paper and discuss some future work in
Section 7.

2. RELATED WORK
Query term weighting has been extensively studied in IR

literature and a retrieval model reflects its choice of query
term weights used. Conceptually, any retrieval model can
be abstracted as the following scoring function:

Score(q,D) =
∑

t∈q∩D

w(t)f(t,D) (1)

where f(t,D) is the matching score of term t and document
D (for example, term frequency), and w(t), the query term
weight, which doesn’t specifically depend on D (for example,
inverse term frequency), is the quantity we are interested
in this paper. By formulating this way, existing retrieval
models make different choices about term weight. The most
commonly used query term weights in the literature is idf,
for example, the vector space model, language model [21],
BM25, etc.

Another well known term weight, the term recall weight,
is closely related to idf and also attracts broad atten-
tion. It is originally captured by the Binary Independence
Model (BIM)[16] to emphasize the importance of query term
weights, as shown below:

Score(q,D) ∝
∑

ti∈q∩D

log

(

P(ti|Rq)

1− P(ti|Rq)
×

1− P(ti|R̄q)

P(ti|R̄q)

)

(2)

where Rq is the set of relevant documents, R̄q is the set of
non-relevant documents, d is a document to be ranked, q is
the query, and ti is a query term. The probability P(t|Rq)
provides one way to weight query terms, known as the RSJ
term weight, to improve retrieval performance. However,
due to involvement of the relevant set of documents of query
q, it is hard to give a reliable estimation of P(t|Rq) when rel-
evance information is unavailable. Indeed, researchers rec-
ognized that the use of term recall weight could lead to huge
retrieval gain as P(t|Rq) is actually the only term about rel-
evance in the ranking function [22], and proposed several
ways to predict it.

Croft and Harper [5] modeled the query term weight as
a tuned constant (the Croft/Harper Combination Match
model). Greiff [6] tried to predict term weight and P(t|R̄q)
with a linear function of idf. His experiments showed some
improvement over the BIM model. More recently, Metzler

[12] modeled term weight as a linear function of document
frequency. The above modeling of term weight only used
df or idf features. The predictions were inadequate as they
did not reflect the insight that P(t|Rq) is a query dependent
quantity and that query dependent features are needed to
estimate term weight. Recently, Zhao et al. [22] proposed a
framework to construct features for query terms from pseudo
relevance feedback [20] and use them to predict term weight.

Retrieval models that capture term dependencies have
attracted research attention and also demonstrated their
retrieval effectiveness compared to unigram query models.
One widely used model is the sequential dependency model
(SD) [10], which features three types of query concepts:
terms, bigrams and proximity expression. An example of
a sequential dependency query in the Indri query language
for the bag-of-words query apple pie recipe is:

#weight(0.8 #combine(apple pie recipe)

0.1 #combine(#1(apple pie)

#1(pie recipe))

0.1 #combine(#uw8(apple pie)

#uw8(pie recipe))

)

#1(apple pie) matches when apple and pie form a bigram.
#uw8(apple pie) matches when apple and pie occur in any
order within a window of 8 words. And #combine is a prob-
abilistic AND operator.

The sequential dependence model provides basic weight-
ing for different types of query concepts. Broad empirical
results have validated the effectiveness of SD over the un-
weighted bag-of-words query model [1, 2, 10]. However, con-
cepts of the same type share the same weight, which is not
optimal. Recent research proposed to predict term weights
for each concept using features computed from collection
statistics, an adaptive model, and an optimization goal of
maximizing an evaluation metric such as Mean Average Pre-
cision (MAP) [1, 2]. Term weighting strategy emphasizing
query aspects is also proposed [23].

Our approach differs from the above methods in that we
represent terms and queries using distributed word vectors
in a semantic vector space learnt from a global corpus and
we construct novel feature vectors from the distributed rep-
resentations to automatically learn term weights for efficient
retrieval.

3. PRELIMINARIES
In this section, we briefly introduce recent work on dis-

tributed representations learning from neural network lan-
guage models and also defines the target term weights we
use in our framework.

3.1 Distributed word vectors
Neural network based language models aim to learn the

word vector representations and a statistical language model
for the underlying text. These models can be mainly at-
tributed to two categories. Models from the first category
try to learn the word vector representations and the lan-
guage model jointly. One example is the neural network
language model (NNLM) [3], where a linear projection layer
and a non-linear hidden layer are adopted to form a feed-
forward neural network. Models in the second category learn
the word vector representations first and then train the lan-
guage model with the word vectors. For example, Mikolov,

576

et al. [14] used one neural network with a single hidden layer
to learn word vector representations and then trained an N-
gram language model on the word vectors. Typically the
simple structure of the neural networks used by the second
approach makes it less computationally expensive, thus we
confine the discussion to this type of system.

Recently, Mikolov et al. [13] proposed two new models,
the Continuous Bag-of-Words model (CBOW) and the Con-
tinuous Skip-gram model, that have greater training effi-
ciency. CBOW tries to maximize classification of a word
by building a log-linear classifier with word vectors of sev-
eral history words and future words around that location as
input, while the Continuous Skip-gram model tries to pre-
dict words within a range before and after the current word
given the word vector of the current word. Both CBOW
and the Continuous Skip-gram model have only one projec-
tion layer between the input and output layer without any
hidden layer, which significantly reduces the computational
cost caused by the non-linear hidden layers in prior neural
network based language models. Negative sampling is used
to learn the CBOW and the Continuous Skip-gram models
[15]. Word vector representations on a Google News corpus
with 100 billion words for a vocabulary of 3 million words
can be learned in less than one day using modest hardware.

Word vectors learned by both models have performed well
in several semantic related task evaluations [13]. Mikolov et
al. released the software for training CBOW and Continuous
Skip-gram models and a set of pre-trained 300-dimensional
word vector representations on the above mentioned Google
News corpus2. Table 1 presents an example of the 10 closest
words to ‘Chinese river’ in terms of cosine similarity in the
word vector representation space.

Table 1: Example of closest n-gram terms to the
phrase ‘Chinese river’.

Word Cosine similarity
Yangtze_River 0.667376
Yangtze 0.644091
Qiantang_River 0.632979
Yangtze_tributary 0.623527
Xiangjiang_River 0.615482
Huangpu_River 0.604726
Hanjiang_River 0.598110
Yangtze_river 0.597621
Hongze_Lake 0.594108
Yangtse 0.593442

It can be seen that the neighbors given by word vectors
are indeed semantically related to the input. Also, in this
example, unlike Yangtze_River, the phrase Chinese_river

does not belong to the vocabulary of the model; there is
no word vector representation for Chinese_river. Instead,
word vectors for both Chinese and river are fetched and
averaged to represent Chinese_river in the search for the
closest neighbors, which yields meaningful results. A recent
analysis [8] justifies the above results by showing that the
learning of distributed representations is essentially factoriz-
ing a word-context matrix which ensures that words sharing
similar context (thus similar meaning) will have similar vec-
tor representations.

This word vector addition property is the key moti-

vation to represent query and terms as word vectors and

thus to derive term features from them to predict target term

2https://code.google.com/p/word2vec/

weights. See [15] for more examples of word vector addition
property. In this paper, we adopt the CBOW framework
to learn word vectors and use them to build a term weight
prediction framework. The proposed framework can also
be applied to word vectors learned by the Continuous Skip-
gram model, which we leave as future work.

3.2 Target term weights
As discussed in Section 1, proper query term weights re-

flects the relative importance of a term to a query and should
also help improve retrieval performance. We choose term re-

call weight as our target term weight to predict in our frame-
work for its simplicity to compute and also great potential
to improve retrieval performance [22]. Given relevance judg-

ments, it can be estimated as P(t|Rq) =
|Rq,t|

|Rq |
, where Rq

is the set of relevant documents to q and Rq,t ⊆ Rq is the
subset of relevant documents that contain term t.

3.3 Term weights and retrieval models
In this section, we present how true or estimated target

term weights can be integrated into different retrieval mod-
els.

3.3.1 Probabilistic language model
One commonly used retrieval model in IR is the language

model, often together with Dirichlet smoothing as shown in
Eq. (3),

Score(q,D) =
∑

t∈q∩D

log
tft,D + µ

cft
|C|

|D|+ µ
(3)

where tft is the term frequency of term t in document D,
cft is the collection frequency of t, |D| is the length of doc-
ument D, |C| is the total length of the collection and µ is
the smoothing parameter.

True term recall weight or term recall weight estimates
can used by a language model in similar fashion as [9], as
shwon in Eq. (4).

Score(q,D) =
∑

t∈q∩D



P(t|R) · log
tft,D + µ

cft
|C|

|D|+ µ



 (4)

The term recall weighted language model shown above is
equivalent to the relevance model under the assumption of
binary term occurrences and uniform document length [22].

3.3.2 BM25
Another widely adopted retrieval model is BM25, as

shown in Eq. (5)

Score(q,D) =

∑

t∈q∩D

log

(

N − dft + 0.5

dft + 0.5

)

·
tft,D · (k1 + 1)

tft,D + k1(1− b+ b
|D|

avgdl
)

(5)

where dft is the document frequency of term t, avgdl is the
average document length over the collection and k1 and b are
free parameters. BM25 is actually more directly connected
to term recall weight, as the above original BM25 model is
an extension of the BIM [16]. By inserting the recall weight
estimates to BM25, we get the recall-enhanced BM25 as
shown in Eq. (6).

Score(q,D) =

∑

t∈q∩D

log

(

P(t|R)

1− P(t|R)
·
N − dft + 0.5

dft + 0.5

)

·
tft,D · (k1 + 1)

tft,D + k1(1− b+ b
|D|

avgdl
)
.

(6)

577

https://code.google.com/p/word2vec/

4. TERM WEIGHTS LEARNING WITH

DISTRIBUTED WORD VECTORS
In this section, we present our model for estimating term

weights with distributed word vectors.

Table 2: Notations
M number of queries
N total number of terms in all M queries
ni number of terms in the ith query
qi the ith query
tij the jth term of the ith query
rij true term weight for tij
p dimension of distributed word vector
wij distributed word vector for tij
xij feature vector for tij
X feature matrix
y regression labels vector
λ regularization parameter
β feature weights vector

Suppose we have a set of M queries Q = {q1, q2, ..., qM}
and each query qi has ni terms for i = 1, 2, ...,M . Let
tij represent the jth term of query qi for j = 1, 2, ..., ni,
rij denote the true term weight estimated from relevance

judgments for tij , hence rij ∈ [0, 1] and N =
∑M

i=1
ni denote

the total number of query terms. (Refer to Table 2 for a
summary of notations.)

Let wij ∈ R
p denote the continuous distributed word vec-

tor representation for term tij , where p is the dimension of
the word vector. In this paper, we propose to directly con-
struct the feature vector xij for term tij from the distributed
word vector representations of term tij and other terms in
the same query qi as

xij = wij −wqi (7)

where

wqi =
1

ni

ni∑

k

wik (8)

is the mean of all word vectors of terms in qi. Hence, the
feature vectors have the same dimension as the word vectors.
An naive example of feature vector construction with p = 2
is illustrated in Figure 1.

Intuitively, proper term weights measures the relative im-
portance of a term w.r.t. the whole query (hence w.r.t. the
other terms in the same query). In other words, a term with
a higher term weight means that it’s more important for the
term to represent the meaning of the query. Meanwhile, the
feature vector of a term defined above is the difference of
the term to the center of distributed representations for all
terms in the query, which also serves as the vector repre-
sentation for the entire query (by applying the word vector
addition properties). Hence, the feature vector measures the

semantic difference of a term to the whole query. Believing
that the above two measures are somewhat related, we pro-
pose to construct features above and learn a model to map
from the feature vectors to term weight labels.

As a side note, we can see that the above constructed
feature vectors are hence query dependent, which is also
necessary in that term weight, from its definition, is also
query dependent. As we will see in the experiments, the
above construction is simple and yet effective.

Having defined the features, we now turn to formulate the
model to map from feature to term weight labels. As the

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 1: Demonstration of transforming global 2-
dimensional word vectors into feature vectors local
to the query. In the graph, blue solid circles rep-
resent terms in one query and green diamonds rep-
resent terms in another query. Note that the two
queries share one common term located at (3, 4).
The red solid circle represents the center for the cir-
cles, and the red diamond represents the center for
the diamonds. The dashed and solid arrows are then
the transformed feature vectors for all the terms.

adopted target term weight is a probability, we first map it
from (0, 1) onto the real line R with a logit function to avoid
numerical issues, as shown below.

yij = logit(rij) = log
rij

1− rij
(9)

We then formulate the “transformed” term weight y as a
linear function of the term feature vectors defined above,
that is y = β⊤x, and employ ℓ1-norm regularization to learn
the feature weights β (We also tried ℓ2-norm regularization
and ℓ1-norm regularization works a little better). Formally,
the optimization problem is

β̂ = arg min
β∈Rp

1

2

M∑

i=1

ni∑

j=1

(yij − β
⊤
xij)

2 + λ‖β‖1 (10)

where λ ≥ 0 is the regularization parameter controlling the
balance between prediction error on training data and model
complexity, and needs to be tuned by cross validation. In
matrix form, the above optimization problem can be ex-
pressed as

β̂ = arg min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 (11)

where y ∈ R
N is

y = (y11, y12, ..., y1n1
, y21, y22, ...y2n2

, ..., yM1, yM2, ..., yMnM
)⊤

(12)

is target term weight vector with term weights of all terms
in the training queries stacked, and X ∈ R

N×p is

X = (x11,x12, ...,x1n1
,x21,x22, ...x2n2

, ...,xM1,xM2, ...,xMnM
)⊤

(13)

It is easy to verify that optimization problem (11) is equiv-
alent to (10) and is of standard form of LASSO regression
[19].

578

Specifically, the subgradient of the objective function w.r.t
β in problem (11) is

∂f(β)

∂β
= X

⊤(Xβ − y) + λs (14)

where

si ∈

{
sign(βi) if βi 6= 0

[−1, 1] if βi = 0
(15)

Efficient gradient based methods can be applied to solve
the above problem and after we get the optimum β̂, when a
new query term t∗ with feature vector x∗ arrives, we predict
its term weight as

P̂(t∗|R) = sigmoid
(
β̂

⊤
x∗

)
=

exp
(
β̂

⊤
x∗

)

1 + exp
(
β̂

⊤
x∗

) (16)

We refer to the above proposed method as DeepTR for it
using distributed representations of words to model term
weights.
DeepTR is a very efficient method of predicting term

weights, which enables it to be used in online services where
latency (the time required to respond to a query) must be
kept low. The word vectors and the regression model are
trained offline. Predicting P(tij |R) for a new query involves
loading the word vectors for the query terms, transforming
them into feature vectors (averaging and subtraction), an in-
ner product with the learned feature weights, and a sigmoid
function. This is far more efficient than some prior methods
that were effective but computationally complex (e.g., [22]).

After we gain estimates of the term weights, we construct
the following query model variations in Indri query language
(with the above apple pie recipe keyword query as an ex-
ample):

• DeepTR-BOW:

#weight(P̂(apple|R) apple

P̂(pie|R) pie

P̂(recipe|R) recipe)

)

• DeepTR-SD:

#weight(

0.8 #weight(P̂(apple|R) apple

P̂(pie|R) pie

P̂(recipe|R) recipe

0.1 #combine(#1(apple pie)

#1(pie recipe))

0.1 #combine(

#uw8(apple pie)

#uw8(pie recipe))

)

Note that in DeepTR-SD, we mainly focus on reweighting
the unigrams, as unigram reweighting plays a much more
significant role than bigrams and proximity expressions in
improving retrieval accuracies, which is also confirmed by
previous studies [22, 1, 2]. The proposed framework can
be directly extended to bigrams, proximity expressions and
other query concepts that can be represented by a standard
inverted list containing positions, however the training data

are more sparse for more complex concepts, thus we leave
that for future study.

The two query model variations proposed above can be
used with language modeling and BM25 retrieval models; in
the next section, we present experiments with both types of
retrieval model.

5. EXPERIMENTAL METHODOLOGY
This section describes how we evaluated our work exper-

imentally. We conduct experiments on 4 TREC test collec-
tions consisting of one Robust track dataset and three Web
Track datasets. The document collections differ in size, from
a small and traditional TREC Robust Track collection to
large Web Track collections of web documents. The dataset
sizes and the queries used with each dataset are shown in
Table 3. The first three datasets are standard datasets used
without change. The ClueWeb09B dataset is the standard
ClueWeb09 Category B dataset after spam documents are
removed. The Waterloo Fusion spam scores3 were used, and
the filtering threshold was set to 70%.

Table 3: Collections and topics. Spam documents
were removed from the ClueWeb09 Category B
dataset (Waterloo Fusion spam scores, 70% thresh-
old).
Collection # Docs # Words TREC Topics
ROBUST04 528K 253M 351-450, 601-700
WT10g 1,692K 1,076M 451-550
GOV2 25,205K 24,007M 701-850
ClueWeb09B 29,038K 23,890M 1-200

We use the Indri search engine4 to index the corpus. The
Krovetz stemmer was used on queries and documents. A
standard list of English stop words is maintained for query
processing. Additionally, for thee web track datasets, anchor
texts from in-links is treated as part of the document and
hence is indexed. We use descriptions of the TREC topics as
queries stopped by a list of standard stop words and several
stop phrases such as “find information”.

We use DeepTR-BOW to denote the re-weighted keyword
queries and DeepTR-SD to denote the re-weighted sequential
dependency queries. All of the above query models can be
expressed in the Indri query language. When constructing
the sequential dependency model queries, we use weights
0.8, 0.1 and 0.1 for terms, bigrams and unordered windows,
respectively as they have shown to be effective in prior re-
search and practical applications [10, 11].

For retrieval, we use a language model with Dirichlet
smoothing [21] and BM25 to test both types of weighted
queries. Although sequential dependency model queries are
not typically used with the BM25 retrieval model, they are
not incompatible with BM25. It is straightforward to cal-
culate the tf and df statistics that BM25 needs in order to
calculate scores for bigrams (#1(apple pie)) and proximity
expressions (#uw8(apple pie)) [2]. We show the results for
these query concepts with BM25 to demonstrate the effec-
tiveness of our method. A minor change is made to Indri to
allow for the insertion of term weight estimates to the BM25
retrieval model, as shown in Eqn. (6). Retrieval parameters
are all set to Indri default values, which is µ = 2500 for
language model and k1 = 1.2, b = 0.75 for BM25.

3http://plg.uwaterloo.ca/~gvcormac/clueweb09spam
4http://lemurproject.org/indri/

579

http://plg.uwaterloo.ca/~gvcormac/clueweb09spam
http://lemurproject.org/indri/

For DeepTR, we use several sets of distributed word vec-
tor representations. The first one is the pre-trained 300-
dimensional vectors released by Google, which is trained on a
Google News corpus of about 100 billion words.5 The second
set of word vectors was trained on a subset of the ClueWeb09
Category B corpus.6 Spam documents were removed, as de-
scribed above; the remaining documents were processed by
Boilerpipe7 to remove the “unimportant” parts of each page.
Mikolov’s Continuous Bag-of-Words Model software [13, 15]
was used to learn the word vectors with 100, 300, 500 di-
mensions, repectively. We also trained word vectors on the
ROBUST04 and WT10g collections with 300 dimensions to
enable comparison of corpus-specific word vectors trained
from small datasets with corpus-independent word vectors
trained on larger web datasets.

We train DeepTR on the set of queries with 5-fold cross
validation and report the averaged performance. That is, we
divide the queries to 5 folds and on each fold, we train the
model using three of them, validates the performance on one
fold of them as development set to pick the regularization
parameter λ from {0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and
report the performance on the rest fold as testing data. After
the model is trained on each fold, term weights for queries
in the testing fold are predicted and retrieval performances
for the reweighted queries are reported.
We use the trec_eval8 tool provided by TREC to as-

sess the retrieval results. We focus mainly on the Mean
Average Precision (MAP) and Precision at 10 (P@10) met-
rics. For web collections such as GOV2 and ClueWeb09B,
where graded relavence judgments are available, we also re-
port Normalized Discounted Cumulative Gain (NDCG) at
20 and Expected Reciprocal Rank (ERR)[4] at 20 values
using the gdeval.pl9 tool provided by TREC. Statistical
significance of model differences in terms of retrieval perfor-
mance is judged by a two-sided paired randomization test
with α < 0.05 rather than the Wilcoxon signed rank test
that was used in prior research [1], which is prone to type I
errors and considered not reliable for ad hoc IR [17, 18].
We compare the retrieval performance of DeepTR to three

baseline query models. The first is the unstructured bag-of-
words query model (BOW). The second is the original sequen-
tial dependency model (SD) [10]. The third is the weighted
sequential dependence model (WSD) [1], which is the state
of the art model for query reweighting. For WSD, we im-
plemented the model with coordinate ascent [11] to directly
optimize MAP on the training queries for WSD. However, we
got slightly worse results than reported in [1, 2], possibly due
to that we didn’t have the MSN query log feature used in the
original paper. As we use an overlapping set of collections
and set of queries, and our BOW and SD baseline results are
very close to the ones reported in the WSD paper, we decide
to show and compare with the performance numbers of WSD
reported in the original paper [1, 2]. We also implemented
the method proposed by Zhao et al. [22] to predict term re-
call, but the experimental results on our datasets were worse
than our unweighted bag-of-words query baselines, thus we
omit the comparison from this paper.

5https://code.google.com/p/word2vec/
6http://lemurproject.org/clueweb09/
7https://code.google.com/p/boilerpipe/
8http://trec.nist.gov/trec_eval/trec_eval_latest.
tar.gz
9http://trec.nist.gov/data/web/10/gdeval.pl

6. EXPERIMENTAL RESULTS
This section presents the results of experiments that com-

pare the DeepTR method of setting term weights in two re-
trieval models (language models, BM25) to three baseline
methods (unweighted queries, sequential dependency mod-
els, weighted sequential dependency models); the effects of
word vectors of varying dimensionality; and the effects of
word vectors trained from different types of data.

6.1 Retrieval results with Language Model
The first experiment compared query term weights pro-

vided by DeepTR in the language model retrieval model
to three baseline methods (unweighted queries, sequential
dependency models, weighted sequential dependency mod-
els). Experimental results are shown in Table 4 for both
DeepTR-BOW and DeepTR-SD. In this experiment, we fix the
dimension of word vectors to be 300 and compare the per-
formances of the proposed models with different sources of
word vectors.
DeepTR-BOW term weights perform better than the un-

weighted bag-of-words query model (BOW) over all collec-
tions, significantly outperforming BOW on ROBUST04 and
GOV2 in terms of MAP and on ROBUST 04 in terms
of P@10. DeepTR-BOW even achieves higher MAP than
the sequential dependency model (SD) on WT10g, how-
ever the results are not statistically significant. DeepTR-BOW
gains comparable MAPs to WSD in ROBUST04, WT10g and
ClueWeb09B. This suggests that DeepTR-BOW which mod-
els no bigrams and proximity expressions is able to achieve
comparable retrieval performances with the sequential de-
pendency models (both unweighted and weighted).

The DeepTR-SD query model performs better than the
standard sequential dependency model over all collections
with all sources of word vectors. Particularly, significant
differences are observed on ROBUST04, WT10g and GOV2
with all sets of word vectors; DeepTR-SD with word vectors
trained on the Google News corpus achieves significantly
higher MAPs over BOW and SD on all four collections. The
significant gains of DeepTR-SD with respect to SD range from
4.2% to 12.1% in MAP. Similar significant improvements for
P@10 are also observed. While we cannot draw statistical
significance conclusions as we have no performance on indi-
vidual query of WSD, on ROBUST04 and WT10g, DeepTR-SD
attains better MAPs than WSD. This validates the effective-
ness of using distributed representations of words as feature
sources to predict term weights in improving both overall
retrieval performance and top-rank results over the baseline
models.

6.2 Retrieval results with BM25
We also show the retrieval results with BM25 in Table 5 for

bothDeepTR-BOW and DeepTR-SD to demonstrate the boost in
retrieval performance with different retrieval models. Prior
research on weighted sequential dependency models [1] did
not publish results for BM25, so we are unable to compare
against that baseline in this experiment.
DeepTR-BOW term weights perform better than the un-

weighted bag-of-words query model (BOW) over all collec-
tions, significantly outperforming BOW for MAP over all data
sets and all word vector variations except for ClueWeb09B
with the Google word vectors; although not statistically sig-
nificant, DeepTR-BOW also performs better than SD with all
word vectors settings on ROBUST04, WT10g and GOV2.

580

https://code.google.com/p/word2vec/
http://lemurproject.org/clueweb09/
https://code.google.com/p/boilerpipe/
http://trec.nist.gov/trec_eval/trec_eval_latest.tar.gz
http://trec.nist.gov/trec_eval/trec_eval_latest.tar.gz
http://trec.nist.gov/data/web/10/gdeval.pl

Table 4: Retrieval performance of DeepTR-BOW using language model retrieval. In the first column, the paren-
thesis indicates the word vector source. Other parentheses show improvements over BOW and SD, respectively.
(For WSD, there were no P@10 values reported and no results on ClueWeb09B were reported in [2])

Query Model
ROBUST04 WT10g GOV2 ClueWeb09B

P@10 MAP P@10 MAP P@10 MAP P@10 MAP

BOW 0.4245 0.2512 0.3290 0.1943 0.5054 0.2488 0.2667 0.0702
SD 0.4414 0.2643 0.3400 0.2032 0.5342 0.2688 0.2798 0.0745
WSD (Table 7 in [2]) - 0.2749 - 0.2260 - 0.2946 - -

DeepTR-BOW 0.4430b 0.2591b 0.3280 0.2103 0.5208 0.2646b 0.2682 0.0718
(Corpus-specific 300) (+3.2/-1.9) (+8.2/+3.5) (+6.3/-1.6) (+2.2/-3.6)

DeepTR-BOW 0.4430b 0.2650b 0.3330 0.2111b 0.5208 0.2646b 0.2667 0.0741
(GOV2 300) (+5.5/+0.3) (+8.7/+3.9) (+6.3/-1.6) (+5.6/-0.5)

DeepTR-BOW 0.4454b 0.2657b 0.3270 0.2129 0.5121 0.2685b 0.2682 0.0718
(ClueWeb09B 300) (+5.8/+0.5) (+9.6/+4.8) (+7.9/-0.1) (+2.2/-3.6)

DeepTR-BOW 0.4450b 0.2673b 0.3380 0.2122b 0.5221 0.2630b 0.2667 0.0732
(Google 300) (+6.4/+1.2) (+9.3/+4.5) (+5.7/-2.2) (+4.2/-1.8)

DeepTR-SD 0.4558bs 0.2754bs 0.3510 0.2182bs 0.5490b 0.2831bs 0.2879b 0.0748
(Corpus-specific 300) (+9.6/+4.2) (+12.3/+7.4) (+13.8/+5.3) (+6.5/+0.5)

DeepTR-SD 0.4610bs 0.2781bs 0.3700bs 0.2223bs 0.5490b 0.2831bs 0.2854 0.0806bs
(GOV2 300) (+10.7/+5.2) (+14.4/+9.4) (+13.8/+5.3) (+14.8/+8.2)

DeepTR-SD 0.4659bs 0.2810bs 0.3610bs 0.2279bs 0.5597bs 0.2890bs 0.2879b 0.0748
(ClueWeb09B 300) (+11.9/+6.3) (+17.3/+12.1) (+16.2/+7.5) (+6.5/+0.5)

DeepTR-SD 0.4627bs 0.2842bs 0.3560 0.2256bs 0.5497b 0.2814bs 0.2869 0.0780bs
(Google 300) (+13.1/+7.5) (+16.1/+11.0) (+13.1/+4.7) (+11.0/+4.7)

b : Statistically significant difference with BOW
s : Statistically significant difference with SD

The DeepTR-SD query model performs better than un-
weighted queries and the standard sequential dependency
model, delivering significantly higher MAPs over all collec-
tions and all sources of word vectors except for ClueWeb09B
with the Google word vectors. The significant gains of
DeepTR-SD over SD range from 1.9% to 7.3%. Similar trends
over P@10 are also observed. DeepTR-SD with word vectors
trained on ClueWeb09B achieves significantly higher P@10
than SD on ROBUST04, WT10g and GOV2.

6.3 Word vector dimensionality
Word vectors of different dimensionality provide different

levels of granularity that may or may not be useful for set-
ting term weights; they may also require different amounts
of training data. Our third experiment investigates the ef-
fects of word vectors containing 100, 300, and 500 dimen-
sions on term weights produced for language models. The
ClueWeb09B corpus is used for these experiments due to its
size, availability, and strong performance in the experiments
above. Experimental results for DeepTR-BOW and DeepTR-SD

are shown d together in Table 6.
Word vectors of 100 dimensions work best for un-

structured BOW queries on ROBUST04, WT10g and
ClueWeb09B, while the best MAP for GOV2 is achieved
with word vectors of 300 dimensions. Similar trends are ob-
served for the DeepTR-SD query model. Notably, DeepTR-SD
with word vectors of 100 dimensions attains a significant
7.9% MAP improvement over SD on ROBUST04, and a sig-
nificant 16.8% MAP improvement over SD on WT10g. On
GOV2, word vectors of 300 dimensions help DeepTR-SD sig-
nificantly improve over SD by 7.5%; last on ClueWeb09B,
word vectors of 500 dimensions achieve the best result over
all three dimensions, by a 4.9% over SD. We also observe
similar results on P@10 when varying the dimensionality of
word vectors. We also evaluated the effects of word vec-
tor dimensionality on term weights for BM25 retrieval and
trends are similar to those for language model retrieval; the
results are omitted due to space constraints.

Our results suggest that 100 dimensions is sufficient for
estimating very effective term weights.

6.4 Corpus effects
We turn back to Tables 4 and 5 to compare retrieval re-

sults obtained with corpus-specific word vectors and word
vectors trained from larger, more general, and external cor-
pora (GOV2, ClueWeb09B, and Google News).
DeepTR-BOW performed about equally well with all three

external corpora; the differences among them were too small
and inconsistent to support any conclusion about which is
best. However, although no external corpus was best for
all datasets, the language model and BM25 retrieval mod-
els agreed on which source of word vectors was best for a
particular corpus. This agreement suggests that the learned
term weights are independent of a particular retrieval model,
which was the purpose of training with term weight values.

The corpus-specific word vectors were never best in these
experiments, even for GOV2 and ClueWeb09, which are
large and provided ‘best’ performance for other datasets.
However, given the wide range of training data sizes – vary-
ing from 250 million words to 100 billion words – it is striking
how little correlation there is between search accuracy and
the amount of training data.

Similar trends are observed for the DeepTR-SD query mod-
els.

6.5 Robustness analysis
Figure 2 presents the detailed number of queries improved

or hurt by proposed method using word vectors trained from
various sources compared to the LM baseline. It’s clear that
for all methods using the predicted term weights, the num-
bers of improved queries are significantly larger than that
of hurt queries. Moreover, when compared to sequential de-
pendency model (SD), all the methods using the estimated
weights help more and hurt fewer queries than sequential
dependency model (SD), especially in the [-20%, 0) range as
shown in the figure.

581

Table 5: Retrieval performance of DeepTR-BOW and DeepTR-SD using BM25 retrieval. In the first column, the
parenthesis indicates the word vector source. (No WSD results are reported as no BM25 experiments are
conducted in [2])

Query Model
ROBUST04 WT10g GOV2 ClueWeb09B

P@10 MAP P@10 MAP P@10 MAP P@10 MAP

BOW 0.4189 0.2460 0.3330 0.1783 0.4926 0.2334 0.2030 0.0566
SD 0.4394 0.2546 0.3350 0.1817 0.5215 0.2409 0.2030 0.0600

DeepTR-BOW 0.4341b 0.2566b 0.3280 0.1903b 0.5107 0.2430b 0.2086 0.0593b

(Corpus-specific 300) (+4.3/+0.8) (+6.7/+4.7) (+4.1/+0.9) (+4.7/-1.2)

DeepTR-BOW 0.4390b 0.2561b 0.3340 0.1910b 0.5107 0.2430b 0.2136b 0.0596b

(GOV2 300) (+4.1/+0.6) (+7.1/+5.1) (+4.1/+0.9) (+5.3/-0.7)

DeepTR-BOW 0.4426b 0.2590b 0.3390 0.1932b 0.5081 0.2462b 0.2086 0.0593b

(ClueWeb09B 300) (+5.3/+1.8) (+8.3/+6.3) (+5.5/+2.2) (+4.7/-1.2)

DeepTR-BOW 0.4382b 0.2600b 0.3450 0.1922b 0.5181b 0.2449b 0.2091 0.0584
(Google 300) (+5.7/+2.1) (+7.8/+5.7) (+4.9/+1.7) (+3.1/-2.7)

DeepTR-SD 0.4406b 0.2595bs 0.3470s 0.1944bs 0.5356bs 0.2478bs 0.2066 0.0613bs
(Corpus-specific 300) (+5.5/+1.9) (+9.0/+7.0) (+6.1/+2.9) (+8.2/+2.1)

DeepTR-SD 0.4450b 0.2609bs 0.3500s 0.1941s 0.5356bs 0.2478bs 0.2091 0.0616bs
(GOV2 300) (+6.1/+2.5) (+8.8/+6.8) (+6.1/+2.9) (+8.8/+2.6)

DeepTR-SD 0.4486bs 0.2630bs 0.3510s 0.1951bs 0.5349bs 0.2502bs 0.2066 0.0613bs
(ClueWeb09B 300) (+6.9/+3.3) (+9.4/+7.3) (+7.2/+3.9) (+8.2/+2.1)

DeepTR-SD 0.4458b 0.2627bs 0.3510s 0.1938s 0.5322b 0.2461b 0.2030 0.0604
(Google 300) (+6.8/+3.2) (+8.7/+6.7) (+5.4/+2.2) (+6.8/+0.7)

b : Statistically significant difference with BOW
s : Statistically significant difference with SD

Table 6: Retrieval performance of DeepTR-BOW and DeepTR-SD using language model retrieval. In the first
column, the parenthesis indicates the word vector source. (For WSD, there were no P@10 values reported and
no results on ClueWeb09B were reported in [2])

Query Model
ROBUST04 WT10g GOV2 ClueWeb09B

P@10 MAP P@10 MAP P@10 MAP P@10 MAP

BOW 0.4245 0.2512 0.3290 0.1943 0.5054 0.2488 0.2667 0.0702
SD 0.4414 0.2643 0.3400 0.2032 0.5342 0.2688 0.2798 0.0745
WSD (Table 7 in [2]) - 0.2749 - 0.2260 - 0.2946 - -

DeepTR-BOW 0.4410b 0.2681b 0.3440 0.2239b 0.5228 0.2667b 0.2727 0.0727
(ClueWeb09B 100) (+6.7/+1.4) (+15.3/+10.2) (+7.2/-0.8) (+3.6/-2.4)

DeepTR-BOW 0.4454b 0.2657b 0.3270 0.2129 0.5121 0.2685b 0.2682 0.0718
(ClueWeb09B 300) (+5.8/+0.5) (+9.6/+4.8) (+7.9/-0.1) (+2.2/-3.6)

DeepTR-BOW 0.4398b 0.2679b 0.3480 0.2179b 0.5054 0.2655b 0.2707 0.0726
(ClueWeb09B 500) (+6.6/+1.4) (+12.1/+7.2) (+6.7/-1.2) (+3.4/-2.5)

DeepTR-SD 0.4711bs 0.2851bs 0.3700bs 0.2373bs 0.5557bs 0.2848bs 0.2874b 0.0778bs
(ClueWeb09B 100) (+13.5/+7.9) (+22.1/+16.8) (+14.4/+5.9) (+10.8/+4.5)

DeepTR-SD 0.4659bs 0.2810bs 0.3610bs 0.2279bs 0.5597bs 0.2890bs 0.2879b 0.0748
(ClueWeb09B 300) (+11.9/+6.3) (+17.3/+12.1) (+16.2/+7.5) (+6.5/+0.5)

DeepTR-SD 0.4606bs 0.2817bs 0.3660bs 0.2306bs 0.5550b 0.2860bs 0.2894b 0.0781bs
(ClueWeb09B 500) (+12.2/+6.6) (+18.7/+13.5) (+14.9/+6.4) (+11.3/+4.9)

b : Statistically significant difference with BOW
s : Statistically significant difference with SD

6.6 Query length
We investigate how DeepTR-SD performs on queries with

different lengths. We divide the queries into three groups:
with no more than 3 terms (Len -3), 4 to 5 terms (Len 4-5)
and 6 terms or more (Len 6+). Figure 3 shows the relative
gains of SD and DeepTR-SD (using vectors pre-trained from
Google News) over BOW. It’s clear that DeepTR-SD works sig-
nificantly better than SD on mid-range and long queries (Len
4-5 and Len 6+) on all collections. It’s worth noting that SD
performs worse than BOW for long queries on WT10g, while in
contrast DeepTR-SD improves BOW by 14%. For short queries
(Len -3), DeepTR-SD outperforms SD over 3 out of 4 collec-
tions, which also renders DeepTR-SD a better alternative for
SD.

6.7 Graded relevance
Our final experiment investigates retrieval quality using

the graded relevance judgments that are available for web

collections such as GOV2 and ClueWeb09B. Table 7 presents
the experimental results using the NDCG@20 and ERR@20
metrics that have been widely used in web search scenar-
ios. Similar to prior experiments, we see that DeepTR-SD

produces more accurate rankings than BOW and SD on both
GOV2 and ClueWeb09.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a novel framework for learning

term weights using distributed representations of words from
the deep learning literature. We motivate the framework by
adopting the word vectors to represent terms and further to
represent the query due to the ability to represent things
semantically of word vectors. Therefore we propose to con-
struct features for terms directly from the word vectors and
model the target term weight as a regression problem.

We conducted experiments with two retrieval models, the
language model and BM25, over four text collections of vary-

582

0

10

20

30

40

50

60

70

80

90

Relative gain

N
u

m
b

e
r

o
f

q
u

e
ri
e

s
ROBUST04

<−
10

0%

[−
10

0%
, −

80
%

)

[−
80

%
, −

60
%

)

[−
60

%
, −

40
%

)

[−
40

%
, −

20
%

)

[−
20

%
, 0

) 0

(0
, 2

0%
)

[2
0%

, 4
0%

)

[4
0%

, 6
0%

)

[6
0%

, 8
0%

)

[8
0%

, 1
00

%
]

>1
00

%

SD

DeepTR−SD (trec7)

DeepTR−SD (wt10g)

DeepTR−SD (gov2)

DeepTR−SD (clueweb100)

DeepTR−SD (clueweb300)

DeepTR−SD (clueweb500)

DeepTR−SD (google300)

0

5

10

15

20

25

30

35

Relative gain

N
u

m
b

e
r

o
f

q
u

e
ri
e

s

WT10g

<−
10

0%

[−
10

0%
, −

80
%

)

[−
80

%
, −

60
%

)

[−
60

%
, −

40
%

)

[−
40

%
, −

20
%

)

[−
20

%
, 0

) 0

(0
, 2

0%
)

[2
0%

, 4
0%

)

[4
0%

, 6
0%

)

[6
0%

, 8
0%

)

[8
0%

, 1
00

%
]

>1
00

%

SD

DeepTR−SD (trec7)

DeepTR−SD (wt10g)

DeepTR−SD (gov2)

DeepTR−SD (clueweb100)

DeepTR−SD (clueweb300)

DeepTR−SD (clueweb500)

DeepTR−SD (google300)

0

10

20

30

40

50

60

Relative gain

N
u

m
b

e
r

o
f

q
u

e
ri
e

s

GOV2

<−
10

0%

[−
10

0%
, −

80
%

)

[−
80

%
, −

60
%

)

[−
60

%
, −

40
%

)

[−
40

%
, −

20
%

)

[−
20

%
, 0

) 0

(0
, 2

0%
)

[2
0%

, 4
0%

)

[4
0%

, 6
0%

)

[6
0%

, 8
0%

)

[8
0%

, 1
00

%
]

>1
00

%

SD

DeepTR−SD (trec7)

DeepTR−SD (wt10g)

DeepTR−SD (gov2)

DeepTR−SD (clueweb100)

DeepTR−SD (clueweb300)

DeepTR−SD (clueweb500)

DeepTR−SD (google300)

0

5

10

15

20

25

30

35

40

45

Relative gain

N
u

m
b

e
r

o
f

q
u

e
ri
e

s

ClueWeb09B

<−
10

0%

[−
10

0%
, −

80
%

)

[−
80

%
, −

60
%

)

[−
60

%
, −

40
%

)

[−
40

%
, −

20
%

)

[−
20

%
, 0

) 0

(0
, 2

0%
)

[2
0%

, 4
0%

)

[4
0%

, 6
0%

)

[6
0%

, 8
0%

)

[8
0%

, 1
00

%
]

>1
00

%

SD

DeepTR−SD (trec7)

DeepTR−SD (wt10g)

DeepTR−SD (gov2)

DeepTR−SD (clueweb100)

DeepTR−SD (clueweb300)

DeepTR−SD (clueweb500)

DeepTR−SD (google300)

Figure 2: Robustness analysis over all data sets in terms of MAP over LM (best viewed in color)

ing sizes to demonstrate the effectiveness of the proposed
framework. Specifically, the proposed framework predicts
term weight for query terms that can be used to weight un-
structured bag-of-words queries and queries that are a slight
variant of the sequential dependency model. We observed
significant improvements at high precision and through-
out the rankings over the unweighted bag-of-words queries
and the original unweighted sequential dependency model
queries.

The proposed method is time efficient. Once the word
vectors are trained in an offline step (that is itself relatively
efficient), online prediction of term weight for new query
terms involves only a simple inner product with the learned
feature weights.

There are several promising directions for further research.
One can extend the method from creating vectors for bi-
grams and proximity terms by averaging the word vectors
of their constituents to a direct modeling of bigrams and
proximity terms; although one might expect sparse training
data for these query terms to be a problem, our results with
small corpora suggest that it may not be necessary to have
massive amounts of information for each term. Word vec-

tors may also be useful for identifying terms that should be
the focus of query expansion or terms that would be good
expansion terms.

Acknowledgements

This work is supported by National Science Foundation un-
der grant IIS-1018317. We thank the anonymous reviewers
for their helpful comments.

8. REFERENCES
[1] M. Bendersky, D. Metzler, and W. B. Croft. Learning

concept importance using a weighted dependence model. In
Proceedings of the third ACM international conference on
Web search and data mining, pages 31–40. ACM, 2010.

[2] M. Bendersky, D. Metzler, and W. B. Croft. Parameterized
concept weighting in verbose queries. In SIGIR, pages
605–614, 2011.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A
neural probabilistic language model. Journal of Machine
Learning Research, 3:1137–1155, 2003.

[4] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan.
Expected reciprocal rank for graded relevance. In CIKM,
pages 621–630, 2009.

583

Table 7: Retrieval performance of DeepTR-SD using graded relevance judgments. Parenthesis indicates the
word vector source.

Query Model
Language Model Retrieval BM25 Retrieval

GOV2 ClueWeb09B GOV2 ClueWeb09B

NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20

BOW 0.3732 0.1493 0.1597 0.1253 0.3789 0.1487 0.1188 0.1075
SD 0.4059 0.1607 0.1694 0.1243 0.3940 0.1554 0.1294 0.1059

DeepTR-SD (GOV2 300) 0.4121b 0.1626b 0.1743b 0.1312s 0.4008bs 0.1590bs 0.1307 0.1068
DeepTR-SD (ClueWeb09B 300) 0.4146b 0.1614b 0.1663 0.1255 0.4033bs 0.1587bs 0.1305 0.1067
DeepTR-SD (Google 300) 0.4112b 0.1600 0.1698 0.1302 0.4010bs 0.1586s 0.1298 0.1050

b : Statistically significant difference with BOW
s : Statistically significant difference with SD

Len −3 (7%) Len 4−5 (27%) Len 6+ (66%)
0

0.05

0.1

0.15

0.2

0.25

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

L
M

ROBUST04

SD
DeepTR−SD

Len −3 (26%) Len 4−5 (39%) Len 6+ (35%)

0

0.05

0.1

0.15

0.2

0.25

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

L
M

WT10g

SD
DeepTR−SD

Len −3 (11%) Len 4−5 (41%) Len 6+ (48%)
0

0.05

0.1

0.15

0.2

0.25

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

L
M

GOV2

SD
DeepTR−SD

Len −3 (26%) Len 4−5 (40%) Len 6+ (34%)
0

0.05

0.1

0.15

0.2

0.25

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

L
M

ClueWeb09B

SD
DeepTR−SD

Figure 3: Performance gains of SD and DeepTR-SD over
BOW w.r.t to query length. Y-axis shows the rela-
tive gain in MAP over BOW and parentheses in X-axis
present the percentage of queries in each group. All
retrievals are performed using LM. (best viewed in
color)

[5] W. B. Croft and D. J. Harper. Using probabilistic models
of document retrieval without relevance information.
Journal of Documentation, 35:285–295, 1979.

[6] W. R. Greiff. A theory of term weighting based on
exploratory data analysis. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 11–19.
ACM Press, 1998.

[7] B. J. Jansen, D. L. Booth, and A. Spink. Determining the
user intent of web search engine queries. In Proceedings of
the 16th International Conference on World Wide Web,
Banff, Alberta, Canada, May 8-12, 2007, pages 1149–1150,
2007.

[8] O. Levy and Y. Goldberg. Neural word embedding as
implicit matrix factorization. In Advances in Neural
Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 2177–2185,
2014.

[9] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval. Inf.
Process. Manage., 40(5):735–750, 2004.

[10] D. Metzler and W. B. Croft. A markov random field model
for term dependencies. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and

development in information retrieval, pages 472–479. ACM,
2005.

[11] D. Metzler and W. B. Croft. Linear feature-based models
for information retrieval. Information Retrieval,
10(3):257–274, 2007.

[12] D. Metzler, V. Lavrenko, and W. B. Croft. Formal
multiple-bernoulli models for language modeling. In
Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 540–541. ACM, 2004.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[14] T. Mikolov, J. Kopecký, L. Burget, O. Glembek, and
J. Cernocký. Neural network based language models for
highly inflective languages. In ICASSP, pages 4725–4728,
2009.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, pages 3111–3119, 2013.

[16] S. E. Robertson and K. S. Jones. Relevance weighting of
search terms. Journal of the American Society for
Information science, 27(3):129–146, 1976.

[17] M. Sanderson and J. Zobel. Information retrieval system
evaluation: Effort, sensitivity, and reliability. In Proceedings
of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
SIGIR ’05, pages 162–169, New York, NY, USA, 2005.
ACM.

[18] M. D. Smucker, J. Allan, and B. Carterette. A comparison
of statistical significance tests for information retrieval
evaluation. In Proceedings of the Sixteenth ACM
Conference on Conference on Information and Knowledge
Management, CIKM ’07, pages 623–632, New York, NY,
USA, 2007. ACM.

[19] R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B,
58:267–288, 1994.

[20] J. Xu and W. B. Croft. Query expansion using local and
global document analysis. In In Proceedings of the 19th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 4–11,
1996.

[21] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proceedings of SIGIR, pages 334–342. ACM, 2001.

[22] L. Zhao and J. Callan. Term necessity prediction. In
Proceedings of the 19th ACM International Conference on
Information and Knowledge Management, pages 259–268.
ACM, 2010.

[23] W. Zheng and H. Fang. Query aspect based term weighting
regularization in information retrieval. In Advances in
Information Retrieval, 32nd European Conference on IR
Research, ECIR 2010, Milton Keynes, UK, March 28-31,
2010. Proceedings, pages 344–356, 2010.

584

	Introduction
	Related Work
	Preliminaries
	Distributed word vectors
	Target term weights
	Term weights and retrieval models
	Probabilistic language model
	BM25

	Term weights learning with distributed word vectors
	Experimental Methodology
	Experimental results
	Retrieval results with Language Model
	Retrieval results with BM25
	Word vector dimensionality
	Corpus effects
	Robustness analysis
	Query length
	Graded relevance

	Conclusions and future work
	References

