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ABSTRACT

Community discovery on large-scale linked document cor-
pora has been a hot research topic for decades. There are
two types of links. The first one, which we call d2d-link,
indicates connectiveness among different documents, such
as blog references and research paper citations. The other
one, which we call u2u-link, represents co-occurrences or si-
multaneous participations of different users in one doc-
ument and typically each document from u2u-link corpus
has more than one user/author. Examples of u2u-link data
covers email archives and research paper co-authorship net-
works. Community discovery in d2d-link data has achieved
much success, while methods for that in u2u-link data either
make no use of the textual content of the documents or make
oversimplified assumptions about the users and the textual
content. In this paper we propose a general approach of com-
munity discovery for u2u-link data, i.e., multiple user data,
by placing topical variables on multiple authors’ participa-
tions in documents. Experiments on a research proceeding
co-authorship corpus and a New York Times news corpus
show the effectiveness of our model.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.2.8 [Database Applications]: Data mining

General Terms

Algorithms, Experimentation

Keywords

Topics on Participations, Community discovery, Nonpara-
metric statistical model, Hierarchical Dirichlet Process
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1. INTRODUCTION
When we talk about linked document data, there are two

different types of links. Link of the first one, which we call
d2d-link, indicates connectiveness between different docu-
ments. These kind of data include blog reference data and
research paper citation data. Link of the other type, which
we call u2u-link, represents co-occurrence or simultaneous
participations of different users in one document. Usually
there are more than one user in each document of this data,
so we also call it Multiple User Data(MUD). Email archives
and research paper co-authorship network fall into this cat-
egory. Figure 1 gives a sample of a research proceeding cor-
pus, where u1, · · · , u4 denote four researchers, and d1, d2, d3
denote three research papers with different colors indicating
different research areas. Many methods of community dis-
covery in d2d-link data have been proposed and gain satis-
factory results. But as to u2u-link data, rare solutions which
combine link information and textual content for community
discovery exist. Current approaches either make no use of
the textual content of the documents or make oversimplified
assumptions about the users as well as the textual content.

Figure 1: Different views of u2u-link graph(best
viewed in color)

One part of traditional methods of community discovery
in u2u-link data are performed solely on a u2u-link graph
in which the vertices represent the users and the edges in-
dicate links between pairs of authors. A community is typ-
ically defined as a subset of users with better connectivity
amongst its members than between its members and other
users of the graph. The task of community discovery is
then to recover such subsets from the given graph. Most
of these approaches, including graph cut based methods[21],
modularity based methods[16], flow based methods[6] and
spectral based methods[20, 1], typically choose an objective
function which captures the above intuition of a community
and then try to optimize the objective function[9]. These
methods only model the links by assigning a certain weight
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Figure 2: A u2u-link graph and its corresponding
participation graph(best viewed in color)

to each link between pairs of users, as the co-authorship net-
work shown in Figure 1(a); though widely applicable and
accepted, they make no use of the textual content of the
documents and thus give no clue how different authors par-
ticipate in the documents and what semantics these partici-
pations imply. Though some other methods take the textual
content into account, they make oversimplified assumptions
and thus ignore useful participation information. The Net-
PLSA model[15] constructs the u2u-link graph as described
in Figure 1(a), merges all documents one user participates
in into a single document for that user. Thus NetPLSA
ignores the various participation information for each user.
The Author-Topic(AT) model[22] learns the topic of a doc-
ument conditioned on the mixture of authors(users) of that
document, which implicitly assumes that the distribution
over topics of a certain author will not change for all his/her
documents. This assumption seems to suffice but it may not
fit some real cases such as a researcher switches to another
research area and publishes research papers with different
topics. A better modeling may exists.

In particular, we propose a Topics-on-Participations(ToP)
model for community discovery in u2u-link data. First, we
transform the u2u-link graph to an equivalent participation
graph for clarity, as illustrated in Figure 2. To better exploit
the multi-author attribute of each document in the data, we
place topical variables on each participation each author get
involved in. More specifically, given the u2u-link data, ToP
leverages Hierarchical Dirichlet Process(HDP) to introduce
hidden topical variables of the participations. Other than
the use of participation structure, ToP can look into the
documents of the participations in detail to recover sound
communities. We first generate the hidden topic variables
of the participations and then documents are generated by
these according to the hidden variables. Besides, ToP is a
nonparametric model, which is a natural outcome of HDP.
The setting of community number is a common problem for
most of the community discovery algorithms proposed so
far. Due to the nonparametric property, ToP is able to au-
tomatically select the proper community number according
to the observed data.

We evaluate ToP on two real-world datasets, a research
proceeding corpus and a New York Times news corpus. The
research proceeding corpus consists of paper abstracts from 7
research conferences, i.e. ACL, ICML, SIGGRAPH, SIGIR,
SIGKDD, SIGMOD, and WWW during 2005-2009. In total
there are 9415 individual authors and 5308 documents. And
the New York Times news corpus contains business news
mentioning selected sets of companies. As the whole corpus

is large, we collect a subset of the corpus, which contains
1677 companies and 2461 documents. Quantitative evalua-
tion on both two datasets shows that ToP outperforms two
related community discovery algorithms. Deeper analysis
shows that ToP can not only identify the proper number of
communities, but also reveal reasonable semantic interpre-
tation for every discovered community.

The main contribution of this paper is two-fold:

• The proposal of ToP which models topics on participa-
tions for community discovery in u2u-link data. This
modeling makes it possible to mine detailed commu-
nity information from participations.

• The extensive evaluation on two real-world datasets,
verifies the effectiveness of the proposed model. It can
automatically detect the proper number of communi-
ties, provide a reasonable interpretation of the discov-
ered communities.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces some related work. Section 3 gives some
definitions and formally define the community discovery task.
Section 4 presents ToP model in detail. Experimental results
as well as some case studies are presented in Section 5. At
last, we conclude the paper and discuss about future work
in Section 6.

2. RELATED WORK
Much work has been done on community discovery. In this

section, we review two lines of work: community discovery
in d2d-link data and community discovery in u2u-link data.

2.1 Community Discovery in d2d-link data
In the context of d2d-link data, probabilistic models, such

as Latent Dirichlet Allocation(LDA)[3] and its variations,
play an important role in uncovering underlying topics from
textual data. Zhou et.al [26] successfully extract e-communities
based solely on the content of communication documents.
Their work gives us a strong support in mining text con-
tents for community discovery. With the aim of taking
into account the link information among documents, serveral
methods have been proposed. Li et al. in [10] design a so-
phisticated model for scalable community discovery on tex-
tual data with relations. Their model explores the d2d-link
graph to detect some community cores and then uses text
information to improve community consistency. Cohn and
Hofmann combine PLSA and PHITS together and derive a
unified model from text contents and citation information of
documents under the same latent space [4]. Erosheva et al.
apply similar mixed membership model [5] for soft clustering
of papers by using text content and references. Liu et al. in
[12] propose the Topic-Link LDA model with the intuitive
that a link between two documents is determined by both
content similarity and author community membership sim-
ilarity and gain improved results against previous methods.
All these approaches captures several aspects of the d2d-link
data, but they may be not suitable for community discovery
in the u2u-link data.

2.2 Community Discovery in u2u-link data
In the past few decades, many models have been proposed

for community discovery in the u2u-link data, but most of
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these methods are based solely on the u2u-link graph and
make no use of the textual content of the documents. Note
here, as these methods take into account only the link infor-
mation and do not consider textual content , they can also
be applied to the above mentioned d2d-link data, depending
on how a “user” is defined.

Traditionally, community discovery is performed by par-
tition of an u2u-link graph with the aim of optimizing a
selected objective function. Many methods have been pro-
posed along this direction, e.g., graph cut based methods,
flow based methods, modularity based methods, spectral
clustering based direction, etc. Graph cut based methods,
including NCut[21], try to find an optimal graph partition
with the edge weight between partitions minimized or edge
weight inside a partition maximized. Due to the NP-complete
complexity of this method, approximate solutions have been
proposed. Flake et al.[6] propose approximate algorithms
based on network flow ideas to partition the network by
solving maximum flow problems, where they define commu-
nity as a set of entities that has small inter-community cuts
and large intra-community cuts. Girvan and Newman[7] in-
troduce betweenness centrality to detect communities. After
that, Newman and Girvan[16] introduce modularity to mea-
sure the overall quality of discovered communities. Modu-
larity evaluates how entities in a community connect with
other entities in that community and has been adopted by
many community detection literature. Modularity can be
optimized by using the eigenvectors of the modularity ma-
trix which gives rise to those spectral clustering based meth-
ods[20, 1]. McCallum et al. in [14] study a new community
discovery task on u2u-link data. Instead of finding densely
connected entities, they seek to find out users with similar
connection pattern such as similar voting patterns.

Another part of previous work analyzing u2u-link data
is based on statistical models[18, 8, 11]. In these models, a
latent variable is introduced for each entity to express its po-
tential characteristic and then the models generate the links
between them according to the latent variable assignments
which are most likely to recover the graph structure[18].
Kemp et al. in [8] extend these models to infinite latent
classes. The model can automatically determine the proper
latent class number based on the observed graph structure.
However, it restricts each entity to only one latent class.
Additionally, the discovered class/group in these models is
a set of entities which have similar connectivity pattern in
the graph, which is quite different from the traditional defini-
tion of community, i.e., a densely connected subgraph of the
whole network. Because of their general modeling property,
these algorithms have been widely adopted, such as biology
data analysis [24, 19], co-authorship network analysis [17],
Web community identification [6]. Although there are many
other great studies in this direction, we do not give a de-
tailed review for each of them because they do not utilize
the text information to enhance the community discovery.

In the context of u2u-link data, there have also been some
related studies aiming to take advantages of both text con-
tents and the u2u-link structure. Most of these algorithms
perform community discovery on a u2u-link graph with text
user profiles. In [15], Mei et al. propose a regularized model
NetPLSA for discovering more smoothing topics/communities
over u2u-link graph by constraining that connected docu-
ments that have similar topic distributions. The Author-
Topic(AT) model uncovers topics conditioned on the mix-

ture of authors that composed a document[22]. McCallum et
al. modeled email archives by a generative process [13]. The
proposed Author-Recipient-Topic(ART) model gives each
pair of author and recipient a topic distribution instead of
a topic distribution per-author. Though their modeling set-
ting shares some similarity with ours, their model is specif-
ically designed for email archives. Different from the above
models, our method tries to handle the setting where the
text contents are usually associated with more than one user
and we aim to quantify the effect of each user’s participation
contribution to the documents’ topical distribution.

3. PROBLEM STATEMENT

In this section, we formally give some definitions and de-
fine the task of community discovery from u2u-link data.

Definition 1. (Participation Graph): A participation
graph G = (U ∪ D, E) is a bipartite graph where the set of
users U and the set of documents D are two disjoint sets.
An edge e ∈ E connecting user u ∈ U and document d ∈ D
indicates that u participates d and we denote this participa-
tion with e. So we can construct an equivalent participation
graph from every u2u-link data. As we see in Figure 2, we
transform a participation graph from the sample u2u-link
graph.

Traditionally, a community is a group of users with dense
interactions amongst its members than between its members
and the remainder of the u2u-link graph. While in our set-
ting, since we have two information sources for community
identification, we need to expand the community definition
to incorporate both of them, i.e. the topical community.

Definition 2. (Topical Community): A topical com-
munity is a soft partition of the users with a multinomial
word distribution over the vocabulary V. We denote the
topical community space as φ∞. The soft partition means
that each user is assigned to each of the communities with
a membership weight, i.e. a community distribution. This
modeling is natural since it is always the case that a user
can belong to multiple communities.

Definition 3. Task (Community Discovery): Given
an participation graph G , the task of Community Discovery

is to find a set of topical communities {c1, c2, ..., cK}, where
the community number K is detected automatically and to
calculate the community distribution of each user u, i.e. θu.

4. COMMUNITYDISCOVERYMODELING
Briefly speaking, our model looks into the participations,

place topical variables on participations and analyzes the la-
tent topics of the documents involved in those participations.
In this section, we will introduce our model, the inference
method and some basic analysis as well.

4.1 Topics on Participations
Our Topics on Participations(ToP) model first utilizes Hi-

erarchical Dirichlet Process to introduce latent topic vari-
ables to each user participation of a document, which forms
the modeling for the participation graph part. Then, for the
document part, we specify the generation process of a doc-
ument via a simple topic modeling technique. Finally, we
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combine the two separate modeling by assuming that they
share the same latent topic space.

Figure 3: Separated graphical model of ToP. (a)
models the participation graph, (b) models the doc-
uments.

Figure 4: Combined graphical model of ToP for the
sample graph in Figure 2 (b)

Participation Graph Modeling. From the participa-
tion graph view, we may consider that each user u’s partic-
ipation eu,d in a document d is an evidence indicating the
community for the user. In our model, we choose to make it
explicit by setting a topical variable for each participation.
We call these variables evidence variables. Since the commu-
nity number is typically not known beforehand, eu,d should
be a draw from an infinite semantic community space, which
will allow the model to learn the community number through
the data. Here, we utilize Hierarchical Dirichlet Process to
assign evidence variables and build our model.

Figure 3(a) shows the graphical model of our Participation
Graph Modeling, whereM is the number of users and |D(i)|
is the number of documents linked to user i. The outside
global Dirichlet Process provides a shared infinite number of
variables for all the users’ evidence variables. This infinite
space brought the non-parametric manner, which enables

the model to learn topic number according to the real data.
Formally, the Dirichlet process is

G|αg, B ∼ DP (αg, B) (1)

where B is the base measure and αg is a positive real number
called the concentration parameter.

The inside local Dirichlet Process models all participation
of a single user in his/her documents. This models the clus-
tering property of a user’s participation in documents, i.e.
if most publications of a user are related to information re-
trieval, the next paper of the user will most probably to be
about information retrieval again. Formally,

U |αl, G ∼ DP (αl, G) (2)

where αl is a positive real number, called concentration pa-

rameter. Then, every user’s evidence variables are drawn
from the infinite space φ∞ as follows:

p(φi,jn+1
|φi,j1 , · · · , φi,jn ;αl) =

αlG+
∑n

h=1 δ(φi,jh )

n+ αl

(3)

where φi,jh denotes the hth evidence variable of Ui, and δ is
the atom function. This actually forms a two-layer Hierar-
chical Dirichlet Process. The specific modeling details and
reason of modeling choices can be found in [23].

Document Modeling. To explore the semantics of the
text documents, topic modeling is a good choice like PLSA
and LDA. Similarly, we set a hidden document model for
each document and assume that all the words in that doc-
ument are drawn from the hidden model. Moreover, since
each document is generated by one author or a group of au-
thors, we add a layer that chooses a certain author’s topic.

Figure 3(b) shows the graphical model of our Document
Modeling, where |dj | is the number of words in dj and |U(j)|
denotes the number of topic variables connected to γj . On
the top, γs are the topic variables of all the authors of
the document, which are draws from the infinite space γ∞.
Then, ω is the weighting vector parameters for the topic se-

lection process, satisfying
∑|U(j)|

h=1 ωj,h = 1. The relation of
these variables is as

p(γj |γ(1),j , γ(2),j , · · · , γ(|Uj|),j) =

|Uj |
∑

h=1

ωhδ(γ(h),j) (4)

where γ(h),j denotes the hth evidence variable that connects
γj . This setting captures the interaction between the au-
thors of the same document by the probability feature that
given γj=ψ, the more γ(h),j having value ψ, the larger the
probability of selecting ψ by γj . In other words, the topic
variables linked to γj tend to agree with each other. Then,
we assume that all the words in that document are drawn
from the topic model, as the lower part of the Figure 3(b).
The joint probability of a document model γj and its gen-
erated words W j is:

p(Wj,1,Wj,2, · · · ,Wj,|W j |, γj) = p(γj)

|W j |
∏

h=1

p(Wj,h|γj) (5)

where γj is a draw from an infinite semantic space γ∞.
Note that, since the modeling focus is to recover the topic

of the links between users, we choose this simpler method
(comparing to LDA and PLSA) to model the documents.
In fact, this method has also been widely used in language
model for information retrieval and naive bayes classifiers
because of its light weight yet effective.
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Combination of Participation Graph Modeling and
Document Modeling. Considering that the community
space φ∞ and the document model space γ∞ are both se-
mantic spaces, we simply unite them into a single space,
φ∞. Now, the whole modeling process is finished. To make
it clearer, the whole model is shown in Figure 4. Note that
the model can not be simplified into box representation and
we have to expand the variables. Figure 4 just gives a sample
according to the participation graph in Figure 2(b).

4.2 Model Inference

Table 1: the symbols which will be used in model
inference
M the number of users
N the number of documents
W j the jth observed document
Ds(i) the set of single-user documents linked to user i
Dm(i) the set of multi-user documents linked to user i
U(j) the set of users linked to document j
T (i) the set of tables in restaurant i
ti,j table index of customer (i, j), i ∈ U(j), j ∈ D(i)
kti,j the dish serving on the table that ti,j refers
ki,t t ∈ T (i), the dish on the tth table in restaurant i
dj the mixture component (i.e. dish) index of multi-

user document j
mi,k number of tables in restaurant i serving dish k
ni,t,k the number of customers in restaurant i, sitting at

table t, eating dish k
var. a marginal of the variable var, e.g. mi,· denotes the

number of tables in restaurant i.
var the set of all var, e.g t denotes the table indices of

all the customers

var−s all the var set excluding the upper scripted one,
e.g. t−ij denotes all the table indices but tij

We employ Gibbs sampling for model inference [2]. Firstly,
we derive two likelihood expressions for the convenience in
the inference derivation later. The conditional density of
W j under mixture component k given all other observed
documents is:

f
−W j

k
(W j) (6)

=

∫

Mul(W j |φk)
∏

j′ 6=j,







d
j′

=k,j′∈Dm(·)

kt
·,j′

=k,j′∈Ds(·)







Mul(W j′ |φk)Dir(φk)dφk

∫

∏

j′ 6=j,







d
j′

=k,j′∈Dm(·)

kt
·,j′

=k,j′∈Ds(·)







Mul(W j′ |φk)Dir(φk)dφk

where Mul() denotes multinomial distribution. And the
selection probability distribution:

s(dj |kt·,j ) =
∑

i′∈U(j)

δ(kt
i′,j

) (7)

We have set all ω’s to be uniform so that these parameters
can be omitted. Further note that we will suppress refer-
ences to the variables in the condition part of a conditional
probability except those will used in the probability expres-
sion.

There are three sets of hidden variables that need to be
sampled: table indices t of customers, mixture component

indices d of documents, and dish indices k of tables. We
derive the Gibbs sampling expression for each of them.

Sampling t. The variable set t should be split to two sets
because they are different in sampling. Firstly, if the docu-
ment j is a single user document, ti,j is sampled by combing
the likelihood of generating the observed documents.

p(ti,j = t|t−i,j
,k) (8)

∝

{

nit·f
−W j

ki,t
(W j) if t is previously used

αlp(W j |t
−i,j , ti,j = tnew ,k) if t = tnew

where p(W j |t
−i,j , ti,j = tnew ,k) is the liklihood for ti,j =

tnew:

p(W j |t
−i,j

, ti,j = t
new

,k) (9)

=
K
∑

k=1

m·,k

m·,· + αg

f
−W j

k (W j) +
αg

m·,· + αg

f
−W j

knew (W j)

If the sampled value of ti,j is tnew , we need to obtain a
sample of ki,tnew :

p(ki,tnew |t,k−i,tnew

) (10)

∝

{

m·,kf
−W j

k (W j) if k is previously used

αgf
−W j

knew
(W j) if k = knew

Secondly, for t of multi-user documents, we have a similar
sampling process but the likelihood function is replaced by
the selection function in Equation 7.

p(ti,j = t|t−ij
,k,d) (11)

∝

{

n
−i,j
i,t,· s(dj |k

−i
t·,j
, kti,j = ki,t) if t is previously used

αlp(dj |t
−i,j , ti,j = tnew,k) if t = tnew

where p(dj |t
−i,j , ti,j = tnew,k) is:

p(dj|t
−i,j

, ti,j = t
new

,k) (12)

=
K
∑

k=1

m·,k

m·,· + αg

s(dj |k
−i
t·,j
, kti,j = k)

+
αg

m·,· + αg

s(dj |k
−i
t·,j
, kti,j = k

new)

And in the case of choosing tnew:

p(ki,tnew |t,k−i,tnew

) (13)

∝

{

m·,ks(dj |k
−i
t·,j
, kti,j = k) if k is previously used

αgs(dj |k
−i
t·,j
, kti,j = knew) if k = knew

Sampling d. These variables relate only to the selection
processes and the multi-user document likelihood. They are
thus sampled as

p(dj = k|W·,d
−j
, t,k) (14)

∝s(dj = k|kt·,j )f
−W j

k (W j)

Sampling k. Since changing ki,t will change the mixture
components of all the ti,·, the sampling relates to both the
selection likelihood and the document likelihood of these
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variables. So the Gibbs sampling expression is:

p(ki,t = k|t,k−it) (15)

∝



























m−it
·,k f

−W {j,j∈Ds(i)}

k (W {j,j∈Ds(i)}) if k is
∏

j′∈Dm(i) s(dj′ |k
−i
t·,j′

, kt
i,j′

= k) previously used

αgf
−W j,j∈Ds(i)

knew (W j,j∈Ds(i)) if k = knew

∏

j′∈Dm(i) s(dj′ |k
−i
t·,j′

, kt
i,j′

= knew)

4.3 Model Analysis
Computation Complexity. The computation burden

mainly lies in the Gibbs sampling inference part. Due to the
sequential sampling process for the unobserved variables t,
k, and d, the computation complexity of Gibbs sampling
is linear to the total number of the hidden variables. The
size of d is the number of documents in C1 = Dm(·), The
size of t is the number of edges in the bipartite link graph
C2 =

∑N

j=1 U(j). The size of k can be estimated by its

expectation C3 =
∑M

i=1 αl log(Dm(i) ∪ Ds(i)). Thus, the
computation complexity is about O(C1 + C2 + C3).

Parameter Setting Analysis. Although the model is
nonparametric, there are still three parameters, two DP con-
centration parameters αl and αg, and one parameter β in
the Dirichlet distribution that is set as the base measure for
the global DP. The three parameters can be divided to two
groups. αl and αg control the prior probability of generating
new community. Since we have no prior information about
the number of communities, they are set to small values,
such as 0.1 ∼ 1 for alphal, 1 ∼ 10 for alphag. β controls
the impact from the text contents. In typical topic model-
ing studies, β is always set to around 0.01 so that the text
contents can dominate the topic modeling process. While
in our setting, β actually controls the balance between the
information of text contents and the information of graph
structure. The smaller β is the larger the impact of text
contents is. We seek to reduce some impact of the text con-
tents so that the graph structure can play a more important
role. Therefore, we should set β to a little larger than the
usual setting 0.01. From the experiments, we find that 0.01
∼ 0.05 is a suitable interval.

Parameter Estimation. After model training, there
may be two sets of mixture components. One set of mix-
ture components are referred by the documents, i.e. either
dj , j ∈ Dm(·) or t·,j , j ∈ Ds(·) will refer to them. We call
them MCref for convenience. Accordingly, the others have
no referred documents. We call them MCnref . MCref is
influenced by both document contents and graph structure.
While MCnref has no influence on the contents. It is orig-
inated from the setting that HDP is placed solely on the
graph structure, but the text contents information may only
agree with the graph information on a subset of the mixture
components brought in by HDP. Since MCnref contains no
text information, we drop them. The mixture components
in MCref are remained as the final community space. They
can be reconstructed by the posterior expectation of them
as

φ̂k =

∫

φkp(φk|{W j |

{

dj = k, j ∈ Dm(·)
t·,j = k, j ∈ Ds(·)

}

})dφk (16)

And the community distribution θi of a user i is estimated
from the community assignment variables dj , j ∈ Dm(i) and

Table 2: Statistics of PAPER and NYT
# of users # of docs # of links # of links/user

PAPER 9415 5308 25034 2.7
NYT 1677 2461 83367 49.7

ti,j , j ∈ Ds(i) as

θ̂i =
1

|Dm(i)|

∑

j∈Dm(i)

δ(φkdj
) +

1

|Ds(i)|

∑

j∈Ds(i)

δ(φkti,j
) (17)

5. EXPERIMENTS
To test the effectiveness of the proposed ToP model, we

apply it to community discovery on two data collections we
crawled from the web, a research proceeding corpus and a
New York Times news corpus. We perform parameter sen-
sitivity analysis, followed by community semantic analysis.
We also compare it with state-of-the-art community discov-
ery algorithms, NCut and NetPLSA, in the experiments.

5.1 Data Collection
We mainly use the research proceeding corpus to evaluate

the detailed performance of our model. The dataset contains
the abstracts of all papers from 7 research conferences, i.e.
ACL, ICML, SIGGRAPH, SIGIR, SIGKDD, SIGMOD, and
WWW, between 2005 and 2009. In total, there are 5308
papers and 9415 individual authors. 11913 unique terms
appear at least once in the dataset after we preprocess the
data by removing common stop words and stemming. We
call this corpus PAPER.

ToP model is not limited to discover communities of users.
The New York Times news corpus is collected to verify the
model’s general applicability. We collect a set of companies1

and their news articles from New York Times. The whole
corpus is quite huge. We build a subset of the complete cor-
pus for experiments. The dataset consists of all the articles
that mention about at least 3 companies. And hereafter we
refer to it as NYT. Table 2 shows some statistics of PAPER
and NYT. All the above datasets are publicly available.

5.2 Evaluation Metric
Given two users’ community membership distributions,

we use the Categorical Clustering Distance(CCD)[25] to com-
pare the quality of these two distributions. This method
relates only to users’ community membership distributions.
So it can be applied to evaluate different algorithms that
generate user community distributions with different com-
munity dimensions.

Given a test data set consisting of a set of users UT =
{ui|1 ≤ i ≤ M} with their ideal community membership
distributions {θi|1 ≤ i ≤ M} and their computed commu-

nity membership distributions {θ̂i|1 ≤ i ≤ M}. The CCD

between θ and θ̂ is given by

CCD(θ, θ̂) = min
wk,j

K
∑

k=1

J
∑

j=1

wk,j

M
∑

i=1

|θi,k − θ̂i,j | (18)

subject to wk,j ≥ 0,
∑K

k=1 wk,j = 1
J
,
∑J

j=1 wk,j = 1
K

for
all k, j, where K and J are the number of communities in θ

1http://topics.nytimes.com/topics/news/business/
companies/index.html
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and θ̂, respectively. Linear programming is used to compute
equation (18).CCD is nonnegative and equals zero if and
only if the two distributions are identical. The smaller the
value is, the closer those two distributions get to each other.

5.3 Ground Truth and Baseline Setting
According to the definition of community in our setting,

we build ideal community membership distributions for the
above datasets. For the PAPER corpus, we treat each con-
ference as a community and the proportion of the number
of papers one author published in each conference as the
ideal probability the author belongs to that community. For
NYT, those companies are categorized into 10 “sectors” ac-
cording to New York Times, such as technology, basic mate-
rial, finance etc. So we treat the categorization as the ideal
community membership for those companies.

Two models are selected as baseline for comparison. One
is NetPLSA and the other is NCut. Since the two algo-
rithms both run on user link graph, we need to first build
such a graph with weights on the links. The weight of a link
connecting ui and uj is set to be the number of edges that
connects ui and uj . As these two models are parametric
models, the number of communities are set manually. For
PAPER, the number of communities of NetPLSA and NCut
are both set to be 7, i.e. the number of conferences in the
corpus for the reason that these conferences focus on dif-
ferent subjects. This setting method is the same as what
the authors of NetPLSA did in their original work. And
to NYT, we set the number of communities to be identical
to the number of “sectors”, i.e., 10, of those companies. For
the parameter γ in NetPLSA, we choose the lead-to-optimal-
result one for 9 different settings raging from 0.1 to 0.9 with
step 0.1.

5.4 Parameter Sensitivity Analysis
We examine different combinations of αl, αg and β in the

experiment. For each combination of the parameters, we run
the inference for 100 iterations. We present the influence of
αl, αg and β in Figure 5.

From Figure 5, we see that the number of communities
detected by our model is not quite sensitive to parameter
changes. The number of communities detected from both
PAPER and NYT are around 8. Section 5.6 gives explana-
tions why they are not precisely equal to the ideal commu-
nity number(mainly because of noise). Though not exactly
perfect, the number of communities our model detects show
the ability of automatically determining the proper number
of communities.

5.5 Community Membership Evaluation
On the PAPER dataset, the evaluation result of NCut

CCD = 1351.02, and we list the evaluation results of Net-
PLSA regarding to its parameter λ in Table 3. As we see
from Table 3, the best CCD value of NetPLSA is 1408.9,
which outperforms NCut, so from now on we choose the
best evaluation result of NetPLSA as comparison baseline
for ToP. In our experiments, we also test different sets of
parameters of ToP with αl varying from 0.1 to 0.5, αg from
1.0 to 5.0 and β from 0.01 to 0.20. We show part of the de-
tailed evaluation results of ToP with respect to αl, αg and
β in Figure 6.

With αl = 0.2, αg = 5.0 and β = 0.05, we get the mini-
mum value of CCD = 1219.65 giving a maximum improve-

Table 4: Best CCD of NCut, NetPLSA and ToP
NCut NetPLSA ToP

PAPER 1351.02 1408.9 1219.65
NYT 173.9 180.35 141.82

ment over NetPLSA as

|1219.65 − 1408.9|

1408.9
× 100% = 13.4%

We pick the configuration of αl, αg and β which lead
to the lowest CCD. Under that configuration, our model
detects 8 communities and we make statistics of papers from
each conference as shown in Figure 7. Note here that the
community membership of a paper is set to be community
assignment in the last iteration of Gibbs sampling. We are
unable to get this result by using NetPLSA due to its coarse
grained modeling of the documents. The horizontal axis
represents the communities and the vertical axis represents
the percentage of papers from each conference. We also list
the top 10 terms for each community discovered by ToP and
NetPLSA in Table 5 and Table 6, respectively.

While on the NYT dataset, we only show the best CCD
results of NCut, NetPLSA and ToP as shown in Table 4.
ToP outperforms both NetPLSA and NCut on NYT. Be-
sides, from the results on NYT, we can see that NCut even
outperforms NetPLSA for the reason that it constructs a
densely-connected graph on NYT and that NetPLSA ne-
glects too much important network clues to discover proper
community structures.

Because ToP models more detailed participation informa-
tion than NetPLSA, ToP takes longer time to output the
community distribution results than NetPLSA does. On the
PAPER corpus, NetPLSA takes about 5 ∼ 10s per iteration
while ToP takes about 10 ∼ 30s per iteration on a daily
workstation depending on the parameters.

5.6 Community Semantic Analysis
From Figure 7, we see that our model discovered 6 major

communities and 2 minor communities. We examine the 6
major communities first. Considering both the percentage of
papers from each conference appearing in each community
and the top 10 terms of every community listed in Table 5,
it is easy to see that c1 well corresponds to the information
retrieval community, c2 is closely related to computer graph-
ics, c3 is mainly about data mining, c4 covers the database
community, c5 mainly concerns about computer linguistics,
c6 is closely related to machine learning. Note that papers
from WWW scatter around several communities, which is
quite reasonable because the WWW conference covers top-
ics in information retrieval, data mining, data management,
etc. As to the 4 minor communities, c7 and c8 both contain
only 1 paper. After an investigation of the data, we find that
the authors of the above 2 papers have no co-authorship with
the rest authors in the dataset and that the contents of these
papers are very dissimilar from others. It is the above two
reasons that prevent our model from determining the same
number of communities as the ideal one. Let us take the pa-
per belonging to c7 as an example. The Portinari project: IR
helps art and culture, a demo paper authored by João Can-
dido Portinari in SIGIR’05, demonstrates a cultural project
of collecting and distributing all works of the Brazilian artist
Candido Portinari and shows how IR helps accomplish this
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Figure 5: Influence of each parameter on community number
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Figure 6: CCD of ToP with respect to each parameter(lower is better)

Table 3: Evaluation result of NetPLSA with respect to the lead-to-optimal-result parameter
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CCD(θ, θ̂) 1474.2 1463.8 1435.6 1509.9 1486.5 1408.4 1432.6 1435.7 1408.9

Table 5: Top 10 terms extracted by ToP for each community
c1 c2 c3 c4 c5 c6 c7 c8

search imag data data model learn portinari economi
web model network queri base algorithm work engin
queri method algorithm web languag model paint perspect
user motion mine system word data brazil understand

inform base pattern servic method method social long
model surfac graph applic approach problem project chang
retriev present model databas translat cluster present arriv

document mesh base base system propos document econom
base time cluster user paper base develop largest
result algorithm propos process show classif import compani

Table 6: Top 10 terms extracted by NetPLSA
c1 c2 c3 c4 c5 c6 c7

model data data web search system imag
languag queri algorithm network queri user model
word databas learn user document interact method
base system model social retriev visual motion

translat applic problem content rank inform base
method process method page inform model surfac
approach xml cluster commun result base mesh

text servic propos inform user present light
system perform set data relev evalu time
extract base approach mine base content comput
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Figure 7: Paper number percentage distribution over community(best viewed in color)

Table 7: Community membership of several active
authors

IR CG∗ DM DB CL ML

W. Bruce Croft △ △ △ △
Jamie Callan △ △
Chengxiang Zhai △ △ △ △
James Allan △ △ △ △
Andrew McCallum △ △ △
Kun Zhou △ △ △

∗CG: Computer Graphics, DB: Database, DM: Data
Mining

project and spread the Brazilian culture. The author is actu-
ally an isolated point in our co-authorship network. Another
example from community c8, The New Economy - An Engi-

neer’s Perspective, a keynote by David Brown in WWW’06,
tells how mobile communication & computing changes peo-
ple’s daily life and the economy. Also, this author is another
isolated point in our co-authorship network.

ToP figures out the community each author gets involved
in. Table 7 shows the community membership of several ac-
tive authors in PAPER. A △ indicates the probability of an
author belonging to a community is above some threshold.

From the above analysis, we see that with the number of
communities determined automatically, our model has the
ability of discovering semantic communities.

5.7 Case Study
This section gives some case studies in the PAPER dataset

to show the semantic community discovery ability of ToP.
We investigate the PAPER dataset by calculating all the
connected components of the co-authorship network and find
that there are on average 184 connected components inside
the scope of each conference. Also the number of authors
who publish papers in more than 2 conferences is 1187. The
above two observations imply that the loosely connectd se-
mantic related scenario and densely connected semantic un-
related scenario is common in the PAPER dataset. Thus we
show two case studies in each case respectively.

5.7.1 Loosely connected semantic related scenario

For this scenario, we take authors with similar research
interests but with neither direct nor indirect co-author rela-
tionships to examine our model. That is, they publish paper

in the same conference but in different connected compo-
nents. In this case, we have the following example.

Andrew McCallum and Thomas Hofmann are in two un-
connected subgraph in our bipartite graph. Andrew Mc-
Callum published nine papers covering topics on data min-
ing in SIGKDD and Thomas Hofmann also contributed one
SIGKDD paper Non-redundant clustering with conditional

ensembles to our dataset. Results of our model successfully
assign most of Andrew McCallum’s SIGKDD papers and
Thomas Hofmann’s SIGKDD paper to the same community(c3
in Figure 7, in which SIGKDD papers make a majority).
Therefore, our model can successfully merge loosely con-
nected semantic related communities.

In this scenario, NCut fails to recover this semantic com-
munity because it takes no text information into considera-
tion.

5.7.2 Densely connected semantic unrelated scenario

For this seenario, we take authors who have co-author re-
lationships but their co-authored papers are about different
research topics to examine our model and we have the fol-
lowing example.

Jerry Scripps, Pang-Ning Tan and Abdol-Hossein Esfaha-
nian together contributed a paper Measuring the effects of

preprocessing decisions and network forces in dynamic net-

work analysis in SIGKDD’09, while Haibin Cheng and Pang-
Ning Tan together contributed a paper Semi-supervised learn-

ing with data calibration for long-term time series forecast-

ing in SIGKDD’08. It is necessary to mention that there
are no records in the PAPER corpus concerning the above
4 authors except these two papers. Therefore, authors of
the first paper are densely connected to each other and the
same to the authors of the second one. These two author
groups share a common vertex (Pang-Ning Tan). Results of
ToP assign c3(Data mining) to the SIGKDD’09 paper and
c6(Machine learning) to the SIGKDD’08 paper, for the rea-
son that the SIGKDD’08 paper mainly focuses on proposing
a new learning method. The above analysis shows that our
model has successfully split the two densely connected com-
munities whose semantics are not quite related.

While in this scenario, we are unable to recover such de-
tailed community of each paper using NetPLSA due to its
coarse grained modeling of the documents by simply merge
the above two papers of Pang-Ning Tan into a single docu-
ment.
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6. CONCLUSIONS AND FUTUREWORK
Although community discovery techniques have been de-

veloped for decades, there is not much work done in devel-
oping general algorithms for u2u-link data while considering
textual content information. This paper proposes a princi-
ple solution. The main contributions of this paper can be
summarized as the following.

1). The proposal of a Topics on Participations(ToP) model
for community discovery in u2u-link data. ToP makes it
possible for mining detailed information from each partic-
ipation. Moreover, the proposed model not only captures
the structure information induced from the u2u-link graph
but also provides a method for automatic selecting proper
number of communities.

2). The extensive evaluation on two real-world datasets,
which verifies the effectiveness of the proposed model. ToP
can automatically detect the proper number of communi-
ties, provide a reasonable interpretation of the discovered
communities, and outperform the baseline models in mining
user community distribution.

There are several potential future directions of this work.
First, we will try some other document modeling e.g. PLSA
and LDA. Second, we will develop a parallel solution to im-
prove the scalability of our algorithm. Last, by taking tem-
poral dimension into consideration, studying how communi-
ties evolve over time also deserves a try.
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