
Efficient Shift-Invariant Dictionary Learning

Guoqing Zheng
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA
gzheng@cs.cmu.edu

Yiming Yang
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA
yiming@cs.cmu.edu

Jaime Carbonell
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jgc@cs.cmu.edu

ABSTRACT
Shift-invariant dictionary learning (SIDL) refers to the prob-
lem of discovering a set of latent basis vectors (the dictio-
nary) that captures informative local patterns at different
locations of the input sequences, and a sparse coding for
each sequence as a linear combination of the latent basis el-
ements. It differs from conventional dictionary learning and
sparse coding where the latent basis has the same dimension
as the input vectors, where the focus is on global patterns
instead of shift-invariant local patterns. Unsupervised dis-
covery of shift-invariant dictionary and the corresponding
sparse coding has been an open challenge as the number of
candidate local patterns is extremely large, and the num-
ber of possible linear combinations of such local patterns is
even more so. In this paper we propose a new framework for
unsupervised discovery of both the shift-invariant basis and
the sparse coding of input data, with efficient algorithms
for tractable optimization. Empirical evaluations on multi-
ple time series data sets demonstrate the effectiveness and
efficiency of the proposed method.

CCS Concepts
•Computing methodologies→ Factor analysis; Learning
latent representations;

Keywords
dictionary learning; sparse coding; time series

1. INTRODUCTION
Sparse representation models, such as those in dictionary

learning, have been proposed for obtaining both a succinct
set of vectors as the new basis (also called the dictionary)
from unlabeled input sequences, and for representing each
sequence as a sparse linear combination of the basis ele-
ments, i.e., the sparse coding of the data. Successful appli-
cations include those in dimensionality reduction [6], image

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13 - 17, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939824

restoration [13, 2, 18], signal compression [15, 17] and com-
pressed sensing [4, 9].

Conventional dictionary learning models assume that the
induced basis is of the same dimensionality of the input
data, thus the basis elements (vectors) and the input se-
quences (also vectors) are strictly aligned from coordinate
to coordinate. This simplistic assumption enables efficient
algorithms for finding the optimal basis from input data;
however, it also significantly limits the scope of potential
applications of those models. Consider the three-time-series
example from [24] reproduced in Figure 1 for instance. Time
series No. 1 and series No. 3 share the bumps (as plotted
in red) which are similar in shape but appear at different
locations. We would consider this pair (1 and 3) more sim-
ilar than the other pairs but such similarity cannot be cap-
tured, obviously, using a global non-shift-invariant pattern
(corresponding to a basis element) with the full span over
the time series. On the other hand, such similarity could
be captured if we allow the basis elements to have a shorter
span and to occur at different locations in the time series.
Such a desirable kind of basis is called shift-invariant basis,
and finding such a basis from data is referred as solving the
shift-invariant dictionary learning (SIDL) problem.

1

2

3

Figure 1: Importance of local patterns (plotted in
red) versus that of the entire time series.

As a challenging problem with a potentially broad range
of applications, SIDL has received increasing attention in re-
cent machine learning research [8, 23, 14, 24]. Existing work
and potential strengths/limitations can be grouped and out-
lined as follows: First, methods such as [24], which focus on
exhaustive or heuristic search over all possible local pattern
candidates, are either highly inefficient or sub-optimal, or
both. Second, methods such as [7], which rely on the avail-
ability of sufficiently labeled data in order to learn discrim-
inant local patterns, are not applicable when labeled data
are lacking or are extremely sparse. Third, methods such as
[8], which use convolution to model invariant shift of local
patterns, has the drawback of not offering any method for
sparse coding of input data. In other words, those methods
are capable of learning shift-invariant local patterns as a new

2095

http://dx.doi.org/10.1145/2939672.2939824

basis, but lack of the ability to combine the shift-invariant
patterns in a sparse coding of the original data. Recall that
sparse coding is a highly desirable for scalable data analysis
tasks (including classification and clustering of time series),
as well as for the interpretability of the analysis and the
robustness of system predictions.

In this paper, we propose a new approach to SIDL which
combines the strengths and addresses the aforementioned
limitations of the previous methods. Specifically, our model
allows the basis elements to be much shorter than the length
of input series, to occur at different locations in the input
series, and to be optimally combined into a sparse cod-
ing of observed data, thus representing each input series
as as a sparse linear combination of the short basis ele-
ments. More importantly, both the shift-invariant basis and
the sparse coding are jointly optimized in an unsupervised
learning framework with our new algorithms for highly effi-
cient computation. Empirical results on multiple times se-
ries demonstrate the effectiveness and efficiency of the pro-
posed approach.

2. PRELIMINARIES
Suppose we have a set of n input data points with di-

mension p, {xi ∈ Rp}ni=1, we want to learn a set of K basis
elements, i.e., a dictionary, D = [d1, ...,dK] in Rq×K and a
sparse coding αi ∈ RK for each input data point xi. In clas-
sic sparse encoding and dictionary learning, the dimension
of the basis is the same as that of the data point, i.e. q = p.

2.1 Sparse Coding
Given a fixed dictionary D, for an input data point sparse

encoding aims to find a sparse linear combination of the
basis vectors as its representation. Formally, sparse coding
with `1 regularization amounts to solving

arg min
α∈RK

1

2
‖x−Dα‖22 + λ‖α‖1 (1)

where λ is controls the balance between restoration error
and coding sparsity. It is well known that `1 penalty yields
a sparse solution, and the above LASSO problem can be
efficiently solved with coordinate descent [19, 20]. Other
sparsity penalties such as `0 regularization can be used well,
however solving sparse coding with `0 penalty is often in-
tractable. In this paper, we focus on the `1 regularized set-
ting.

2.2 Dictionary Learning
When we lack a pre-existing dictionary a priori or we wish

the dictionary to reflect directly the properties of the data,
dictionary learning can induce both the sparse coding for the
input data points and the dictionary by solving the following
optimization problem

arg min
D∈Rp×K
αi∈RK

1

2

n∑
i=1

‖xi −Dαi‖22 + λ‖αi‖1

s.t. ‖dk‖2 ≤ c, for k = 1, ...,K (2)

where c is a constant and the norm constraint on dj is nec-
essary to avoid degenerate solutions. The above problem is
not convex in (D,α) jointly, but is convex if we fix either
variable. Hence alternate optimization between both sets of

variables is a common approach to address dictionary learn-
ing.

When D is fixed, the above problem is essentially a sparse
coding as described in Section 2.1. When all αs are fixed,
the above problem is quadratic programming with quadratic
constraints (QCQP) and there exist many algorithms to
solve it efficiently.

3. SHIFT-INVARIANT DICTIONARY LEARN-
ING

In this section, we present our shift-invariant dictionary
learning (SIDL) to capture both the locality of representa-
tive patterns as well as preserve a sparse representations for
the data points.

Unlike classic dictionary learning which enforces the same
dimensionality for the basis and the data point (q = p),
shift-invariant dictionary relaxes this constraint by q ≤ p,
allowing the basis to slide along the support of the data
point. For real problems, we may often set q to be much
smaller than p; however we emphasize that classic DL is a
special case of SIDL with the setting q = p.

For a data point xi ∈ Rp and shift-invariant basis dk ∈ Rq,
we introduce a variable tik to denote the location1 where dk
is matched to xi, with tik = 0 indicating that dk is aligned
to the beginning of xi and that tik = p − q indicating the
largest shift dk can be aligned to xi without running beyond
the boundary of xi, as shown in Figure 3. Hence the possible
values for tik are all integers2 in [0, p− q].

(a) Basis d is aligned to the beginning of x, i.e.
the shift variable t = 0

(b) Basis d is aligned to the end of x, i.e. the shift
variable t = p− q

Figure 2: The same basis with different shifts

Obviously, shifting a basis element d by an amount of t is

1The idea of shift invariant basis can also be applied to data
with more than one “directions”, such as image. For exam-
ple, for images, the basis now tunrs to be a rectangular area
and the shift is represented by two variables on each direc-
tion, the idea proposed in this paper can be easily extended
to this case. For brevity, we focus on data with only one
“direction” in this paper and leave the extensions as future
work.
2As we only consider “discretized” data points, the shift can
only take integer values.

2096

equivalent to defining a new vector as

Tp(d, t) , v ∈ Rp (3)

where

vi =

{
di−t if 1 ≤ i− t ≤ q
0 otherwise

(4)

Given a set of input data points {xi}ni=1, shift-invariant
dictionary learning aims to learn the dictionary D = [d1, ...,dK],
the sparse coefficients {αik} and the corresponding shifts
{tik} entirely from the data in an unsupervised way:

SIDL :

arg min
D∈Rq×K
αi∈RK

tik∈[0,p−q]

1

2

n∑
i=1

∥∥∥∥∥xi −
K∑
k=1

αikT (dk, tik)

∥∥∥∥∥
2

2

+ λ

n∑
i=1

‖αi‖1

s.t. ‖dk‖2 ≤ c, for k = 1, ...,K (5)

4. MODEL LEARNING FOR SIDL
In this section, we present an efficient algorithm to solve

SIDL. Similar to classic DL, the SIDL problem is non-convex;
hence, we employ an anternative optimization scheme.

4.1 Shift-invariant sparse coding
Given the dictionary D fixed, Problem (5) turns to solving

for the basis matching location tik and the the coefficients
α. Also note that with D fixed, Problem (5) can be de-
composed to learning the coefficients and the basis shift for
every xi independently. Hence in this subsection we drop
the subscript and simply use x to represent any single input
data point from the data set for clarity.

To learn α and {tk} for input x, we adopt coordinate
descent to estimate the coefficients α and a greedy approach
to estimate {tk}. Minimizing over αk and tk with {αj}j 6=k
and {tj}j 6=k fixed:

arg min
αk,tk

1

2
‖αkT (dk, tk) +

∑
j 6=k

αjT (dj , tj)− x‖2 + λ|αk|

(6)

For this one-dimensional optimization problem, its solution
for αk (as a function of the optimal basis shift t∗k) is

αk = S λ
‖dk‖2

(
T (dk, t

∗
k)>x̂

T (dk, t∗k)>T (dk, t∗k)

)
= S λ

‖dk‖2

(
T (dk, t

∗
k)>x̂

‖dk‖2

)
(7)

where x̂ ,
[
x−

∑
j 6=k αjT (dj , tj)

]
is the residue of fitting x

with all basis except for dk and S(·) is the shrinkage operator
defined as

Sa(x) =


x− a if x ≥ a
0 if x ∈ (−a, a)

x+ a if x ≤ −a
(8)

The above solution for αk depends on the shift tk of the
kth basis element, and since it can only take integer values
from [0, p − q], a naive approach is to enumerate all pos-
sible tk, compute the corresponding αk and pick the pair
of (t∗k, α

∗
k) which yields the minimum objective defined in

Algorithm 1 Shift-invariant sparse coding

Input: data point x ∈ Rp, dictionary D = [d1, ...,dK]
Output: sparse coding α∗, matching offsets {t∗k}Kk=1

Initialize α randomly
repeat

for k = 1 to K do
x̂←

[
x−

∑
j 6=k αjT (dj , tj)

]
tk ← Eq. (9)
αk ← Eq. (10)

end for
until convergence

(6). However, by plugging Eq. (7) back to Problem (6) and
with simple math manipulation, we arrive at the following
theorem which is much more efficient to compute.

Proposition 4.1. The optimal solution for Problem (6)
is

t∗k = arg max
tk

|T (dk, tk)>x̂| (9)

and

a∗k =

{
T (dk, t

∗
k)>x̂ if |T (dk, t

∗
k)>x̂| > λ

0 otherwise
(10)

Proof. See Appendix A. �
Proposition 4.1 suggests that we only need to compute the

dot product between the basis element and the segment from
the input data point; all updates are exact which do not in-
volve parameter tuning. Algorithm 1 outlines the suggested
procedure for solving shift-invariant sparse coding.

4.2 Shift-invariant dictionary update
When the coefficients α and basis shifts {tik} are fixed,

updating the dictionary requires solving the following opti-
mization problem:

arg min
d1,...,dk∈Rq

1

2

n∑
i=1

∥∥∥∥∥xi −
K∑
k

αikT (dk, tik)

∥∥∥∥∥
2

s.t. ‖dk‖2 ≤ c, ∀k ∈ [1,K] (11)

Coordinate descent is used to solve for d as well, when min-
imizing over dk with {dj}j 6=k fixed:

arg min
dk∈Rq

1

2

n∑
i=1

∥∥∥∥∥∥xi − αikT (dk, tik)−
K∑
j 6=k

αijT (dk, tij)

∥∥∥∥∥∥
2

s.t. ‖dk‖2 ≤ c (12)

This is a least square problem with quadratic constraints,
which we can solve via its dual problem. The Lagrangian is:

L(dk, u) =
1

2

n∑
i=1

‖x̂i − αikT (dk, tik)‖2 + u(‖dk‖2 − c)

(13)

where x̂i , xi−
∑K
j 6=k αijT (dk, tij) is the residue for xi and

u ≥ 0 is the Lagrangian multiplier. Minimizing L(dk, u)
over dk, we get an analytic form for d∗k as

d∗k =

∑n
i=1 αikx̂

[1+tik,q+tik]
i

2u+
∑n
i=1 α

2
ik

(14)

2097

Algorithm 2 Shift-invariant dictionary update

Input: data point {xi}ni=1, sparse coding α, matching
offsets {tk}Kk=1

Output: dictionary D = [d1, ...,dK]
Initialize D randomly
repeat

for k = 1 to K do
x̃←

∑n
i=1 αikx̂

[1+tik,q+tik]
i

dk ← Eq. (15)
end for

until convergence

Algorithm 3 SIDL

Input: data points {xi}ni=1, desired basis dimension q,
desired number of basis K
Output: dictionary D = [d1, ...,dK], sparse coding
{αi}ni=1, basis shifting location {tik}
Initialize D, {αi}ni=1 and {tik} randomly
repeat

Sparse coding: call Alg. 1
Dictionary updating: call Alg. 2

until convergence

where x̂
[1+tik,q+tik]
i denotes the slice of x̂i from index 1+ tik

through q + tik. Eq. (14) suggests that the optimum dk is
a weighted average of the corresponding matching segments
of all residues {x̂i}. Plugging it back to the Lagrangian and
maximizing the dual problem we finally get

d∗k =


√
c

‖x̃‖ x̃ if
‖x̃‖∑n
i=1 α

2
ik

≥
√
c

1∑n
i=1 α

2
ik

x̃ otherwise
(15)

where x̃ ,
∑n
i=1 αikx̂

[1+tik,q+tik]
i . Refer to Appendix B for a

detailed proof of Eq. (15). Algorithm 2 outlines the learning
procedure for shift-invariant dictionary updating.

4.3 Complete algorithm
Given unlabeled input data points, SIDL alternates be-

tween optimization of the sparse coding and updating the
dictionary. Algorithm 3 outlines the learning procedure for
shift-invariant ditionary updating.

4.3.1 Algorithm analysis
The time complexity of SIDL consists of two parts, one for

shift-invariant sparse coding and the other for shift-invariant
dictionary update. For shift-invariant sparse coding (Algo-
rithm 1), the cost for one outer iteration, i.e., finding the op-
timum shifting locations and basis coefficients for K basis,
is O(Kq(p−q+1)), where O(q) comes from the cost of com-
puting inner product of two vectors of length q and p−q+1
is the possible integer scope for solving tk by Proposition
4.1, hence the total complexity for one call to Algorithm 1
is O(M1Kq(p − q)) where M1 is the maximum number of
iterations allowed in Algorithm 1.

The core part of shift-invariant dictionary update (Algo-
rithm 2) is the computing for dk, which takes O(nq) oper-
ations to compute the x̃ and scale it to get dk according to
Eq. (15). Thus the total complexity for one call to Algo-
rithm 2 is O(M2Knq) where M2 is the maximum number of
iterations allowed in Algorithm 2.

In fact, we do not necessarily require Algorithm 1 and 2 to
converge in every call from 3, since as long as the objective
function decreases in both shift-invariant sparse coding and
shift-invariant dictionary update, the entire algorithm is still
guaranteed to converge. Hence M1 and M2 can be set to
be quite small, e.g., 10 to 20 iterations in both Algorithm 1
and 2 would suffice. Therefore, the total time complexity for
SIDL is O(MKq(n+ p− q)), where M is the total number
of iterations allowed or needed for Algorithm 3 to converge.

4.3.2 Comparison to classical dictionary learning
As we mentioned, classical dictionary learning is a special

case of the proposed framework of SIDL by setting q = p,
hence the time complexity for classical dictionary learning is
O(MKpn). By comparing the complexity of the proposed
SIDL framework to classical DL, because

MKq(n+ p− q) < MKnp (16)

holds for any q < min(n, p), hence in terms of asympotic
complexity, the proposed SIDL is more efficient than stan-
dard classical DL in terms of time complexity. If q is close to
min(n, p), then the proposed SIDL will be of about the same
compelexity in computation. Empirical timing of SIDL can
also be found in Section 5.3.

5. EXPERIMENTS
In this section, we evaluate the proposed Shift-Invariant

Dictionary Learning (SIDL) from two aspects. One is to in-
vestigate its performance as a data reconstruction algorithm
in reconstructing unseen data with the dictionary learned
from training data, and the other is to evaluate the quality
of learned sparse representations as features for downstream
tasks, specifically for classification.

5.1 Data sets

Table 1: Dataset information
Dataset #(Training) #(Testing) Length #(classes)

Trace 100 100 275 4
synthetic control 300 300 60 6
ECGFiveDays 23 861 136 2
Gun Point 50 150 150 2
MedicalImages 381 760 99 10
Chlorine. 467 3840 166 3

Before presenting our experimental results, we first list
the data sets on which SIDL is performed. We use several
real-world time-series data sets in all evaluations from the
UCR time series archives3 [5], which are listed below with
brief descriptions.

• Trace: Synthetic dataset designed to simulate failures
in nuclear power plants;

• Synthetic Control: Synthetically generated charts
by the process in [1];

• ECGFiveDays: Measurements of the abnormality of
heartbeat recorded by an electrode;

• GunPoint: Video tracking data of a human test sub-
ject’s right hand, recording whether or not he/she is
pulling out a gun;

3http://www.cs.ucr.edu/˜eamonn/time series data/

2098

http://www.cs.ucr.edu/~eamonn/time_series_data/

• MedicalImages: Histograms of pixel intensity of med-
ical images of different human body regions;

• ChlorineConcentration: Chlorine concentration in
drinking water versus time collected from eight house-
holds.

Table 1 lists related statistics about the data sets mentioned
above.

5.2 SIDL on data reconstruction
We first investigate how SIDL can be used as a data re-

construction method by learning the shift-invariant basis on
the training set and use the learned dictionary to encode the
signals from the test set. We report the reconstruction error
on all data sets, as well how its performance changes with
different values of the sparsity regularization parameter λ,
basis vector length q and dictionary size K.

We train SIDL with different parameters on the training
portion of each data set and use the learned dictionary to re-
construct the testing data. Specifically, on the training data,
we use SIDL the learn the shift-invariant dictionary D, and
then given the testing data points, we solve for their sparse
codings with D fixed. The Mean Squared Error (MAE) for
reconstruction is measured as

MAE =
1

ntest

ntest∑
i=1

∥∥∥∥∥xi −
K∑
k=1

α∗ikT (dk, t
∗
ik)

∥∥∥∥∥
2

(17)

where α∗ik and t∗ik are obtained by solving the shift invariant
sparse coding problem as described in Section 4.1 with dks
trained from the training data points.

Figure 3 presents the complete reconstruction performance
of SIDL on all time series data sets with different parame-
ter configurations. It’s worth noting that when q

p
equals 1,

our proposed model reduces to classical dictionary learning.
The dictionary sizes in Figure 3 are all set to be K = 50 as
we have examined different values of K and observed similar
patterns, so we omit the detailed graphs.

On five out of the six datasets, we can see that SIDL ac-
tually achieves (i.e. when q

p
< 1) significantly lower recon-

struction error than classical dictionary learning, given the
same number of basis elements and same sparsity regular-
ization strength. This suggests that not only SIDL produces
a better dictionary to generalize to unseen data but also it
results in smaller dictionary (since our basis elements are
shorter than those of classical dictionary learning). Results
from Figure 3 demonstrate that SIDL can be an effective al-
ternative to yield unsupervised sparse representations com-
pared to classical dictionary learning.

The above results show the reconstruction performance of
SIDL doing a grid search of the parameters. When applied
pratically, the optimal choice of q

p
and the degree of spar-

sity regularization λ can be obtained via cross-validation on
splits from the training set, as we will show in the evaluation
for using codings from SIDL as features for classification in
Section 5.4.

5.3 Computational efficiency of SIDL
We plot the running time of SIDL with different parameter

setting in Figure 4. As disscussed in Section 4.3.2, when the
length of the basis is quite smaller than that of the input
signal, SIDL will be much faster than classical DL, such as
q = 0.1p and p = 0.25p in Figure 4. When q gets closer to p,

as we can see from 4, the running time for SIDL is getting
closer to that of DL, especially for larger K.

We also plot how the training objective of SIDL and DL
decreases in terms of iterations. We set the convergence
threshold, which is defined as the relative function objective
change, to be 10−5, i.e. convergence is achieved when

|F (i+1) − F (i)|
F (i)

≤ 10−5 (18)

where F (i) is the objective function for training after the
ith iteration. It’s clear to see when λ = 1, all the SIDL
runs converge in fewer iterations than DL, except for q =
0.75p which takes about 200 more iterations to converge.
When λ = 10, which encourages sparser solutions, all the
SIDL runs converge in fewer iterations than DL. These imply
that the proposed SIDL method can be at least as efficient
as classical DL, with the flexibility to model shift-invariant
basis present in the data.

It’s also worth emphasizing that, from Figure 4, although
the training loss minimum DL achieved is slightly better
than those of SIDLs, this does not necessarily mean that
the basis found by DL is any better than those found by
SIDL. In fact, as we have shown in the data restruction and
we will show in the classification tasks, the basis found by
SIDL actually are better than those found by DLs.

5.4 Sparse coding from SIDL as features for
classification

In this section, we evaluate the encodings output by SIDL
as feature representations for time series classification tasks.
For all data sets, we train the dictionary on the training
set and apply it onto the test data points to get their en-
codings. The dictionary size K, the length of basis element
q and the sparsity regularization parameter λ are chosen
via 3-fold cross validation on the training set. We compare
the classification results using sparse coding output by SIDL
versus using raw input as features. Below is a list of classi-
fication algorithms we used for the evaluation.

• 1-Nearst Neighbor with Euclidean distance (1NN-Euclidean).
It is widely accepted in the time series mining commu-
nity that 1NN with eucledian distance [22] is a strong
though naive baseline. We run this algorithm on the
raw representation of the time series.

• 1-Nearst Neighbor with Dynamic Time Warping (1NN-
DTW). It is by far a strong benchmark method for time
series classfication. The distance of two time series is
computed by performing DTW on the pair.

• Support Vector Machine with raw representation (SVM-
Raw). This method trains an SVM classifier based
on the raw representation of time series, without any
transformation or processing of the input signals. We
use the libsvm package to implement this method [3,
21].

• Support Vector Machine with classical dictionary learn-
ing features (SVM-DL). This method trains an SVM
classifier based on the encodings from classical dictio-
nary learning and then makes predictions on the en-
codings of testing data.

• Support Vector Machine with SIDL (SVM-SIDL). We
train SVM on the shift invariant sparse codings given

2099

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
M

S
E

Trace (K=50)

λ = 0.1
λ = 1.0
λ = 10.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q
p

0

2

4

6

8

10

M
S

E

synthetic control (K=50)

λ = 0.1
λ = 1.0
λ = 10.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q
p

0.0

0.5

1.0

1.5

2.0

2.5

M
S

E

Gun Point (K=50)

λ = 0.1
λ = 1.0
λ = 10.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
S

E

ECGFiveDays (K=50)

λ = 0.1
λ = 1.0
λ = 10.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
S

E

MedicalImages (K=50)

λ = 0.1
λ = 1.0
λ = 10.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q
p

0

1

2

3

4

5

6

M
S

E

ChlorineConcentration (K=50)

λ = 0.1
λ = 1.0
λ = 10.0

Figure 3: Reconstruction performance of SIDL w.r.t sparsity regularization parameter λ and the relative
length of the basis element q

p
and a fixed dictionary size of K = 50. Note that q

p
= 1 denotes the classical

dictionary learning setting.

K

0 20 40 60 80 100

T
im

e
 t
o
 c

o
n
v
e
rg

e
 (

s
)

0

2000

4000

6000

8000
SIDL (q=0.10p)

SIDL (q=0.25p)

SIDL (q=0.50p)

SIDL (q=0.75p)

DL

(a) Time taken for SIDL with different q
and DL to converge (convergence thresh-
old = 10−5) when trained on the Trace
data set with sparsity regularization pa-
rameter λ = 1.

iteration

0 200 400 600 800

a
v
g

.
tr

a
in

in
g

 l
o

s
s

10
0

10
1

10
2

SIDL (q=0.10p)

SIDL (q=0.25p)

SIDL (q=0.50p)

SIDL (q=0.75p)

DL

(b) Training loss versus iteration for
SIDL and DL when trained on the
Trace data set with sparsity regular-
ization parameter λ = 1. (convergence
threshold = 10−5)

iteration

0 50 100 150

a
v
g

.
tr

a
in

in
g

 l
o

s
s

10
1

10
2

10
3

SIDL (q=0.10p)

SIDL (q=0.25p)

SIDL (q=0.50p)

SIDL (q=0.75p)

DL

(c) Training loss versus iteration for
SIDL and DL when trained on the
Trace data set with sparsity regulariza-
tion parameter λ = 10. (convergence
threshold = 10−5

Figure 4: Running time comparisons

by SIDL, and report the performance on the encod-
ings of the testing data points with the learned shift-
invariant dictionary.

Table 2 presents the classification accuracies of various
classification methods of SIDL on all data sets, with compar-
ison to the baseline method. One interesting result to point
out is that, without sparse encodings (such as DL and SIDL),
classification with raw time series representations works al-
ways worse than naive 1NN method with Euclidean distance
except on the ECGFiveDays data set. This suggests for
data with temporal dependencies, such as time series, using
raw representation as features for SVM is not a good idea.

Nevertheless, sparse codings of the sequential data does help
improve classification, compared to SVM-Raw.

SVM-SIDL achieves either the best or second best results
on five data sets out of six, demonstrating the benefits of
modeling shift-invariant local patterns in the data and though
classical dictionary learning alleviate the problem suffered
by SVM-Raw, it still lacks the flexibility to model local pat-
terns. This further validates our motivation that a method
that models local patterns in sequential data will better rep-
resent and explain the data.

As also validated by previous literature, 1NN-DTW is in-
deed a strong baseline method for time series classification,
achieving three times of best and once of second best ac-

2100

Table 2: Classification accuracies (Best results are printed in both bold and italic; second best results are
printed in bold only. All parameters of SIDL are selected via 3-fold cross validation on splits of the training
data with the following range K ∈ {10, 20, 50, 100}, λ ∈ {0.1, 1, 10, 100}, q ∈ {0.1p, 0.25p, 0.5p, 0.75p}. The same
parameter ranges are also used for parameter tunning for DL. The parameter C for all linear SVMs are
chosen through cross validation from {0.001, 0.01, 0.1,1,10,100,1000})

Dataset 1NN-Euclidean 1NN-DTW SVM-Raw SVM-DL SVM-SIDL
Trace 0.760 1.000 0.430 0.680 0.950
synthetic control 0.880 0.993 0.930 0.960 0.967
GunPoint 0.913 0.907 0.747 0.933 0.953
ECGFiveDays 0.797 0.768 0.965 0.497 0.999
MedicalImages 0.684 0.737 0.649 0.653 0.688
Chlorine. 0.650 0.648 0.533 0.533 0.533

curacies over all data sets, while the proposed SVM-SIDL
twice of best and three times of second best. It’s worth
mentioning that the proposed method is formulated to reduce
reconstruction error, instead of classification error. Besides,
it’s worth pointing out that nearest neighbor based methods
suffer from expensive computational burden from pairwise
DTW between the test instance and each of all training ex-
amples when doing prediction.

Also it is worth mentioning that SVM-SIDL performs best
on the“toughest”dataset in the collection, i.e., ECGFiveDays,
with a large margin over the baseline methods, including
1NN-DTW. This again reinforces the benefits of modeling
shift-invariant local patterns for sequential data mining.

5.5 Learned Dictionary
In this section, we showcase the basis elements learned

by SIDL without any human supervision. Figure 5 presents
sample time series from each of the four classes and plots the
learned basis elements together with the time series for the
Trace data set. The two largest basis of each time series (in
terms of the absolute value of the coefficient of that basis)
are plotted with their shift locations in Figure 5. Also the
degree of sparsity of the resulting codings (propotions of zero
coefficients) for each time series are shown in the figure titles.
It can be observed from the plots that the learned basis do
capture local and discriminative patterns of the time series
from different classes. This further validates the idea of
representing time series with local basis elements and the
proposed method can be used to efficiently learn them, even
in the absence of true class labels. All the basis elements are
learned with random initialization at the start of SIDL; it
is possible that the algorithm might work even better given
meaningful initializations.

Similarly, sample time series for Gun Point are plotted
in Figure 6. Again, though the dictionary and the encod-
ings are learned in an unsupervised fashion, it is clear that
the learned representations for the time series do represent
meaningful local patterns and more importantly, these pat-
terns are relevant indicators for classification, as shown em-
pirically by the example time series.

More sample time samples for ECGFiveDays are shown
in Figure 7.

6. CONCLUSIONS AND FUTURE WORK
This paper presents a new framework for shift-invariant

dictionary learning to capture local patterns from input sig-
nals. This framework relies on the assumption that the basis
vectors may be be shorter than the full input signal. In other

words useful temporal patterns may be embedded in differ-
ent locations of a longer time series. We also presenet an
efficient learning algorithm to estimate the shift-invariant
sparse coding as well as a set of effective basis vectors. In
our experiments on benchmark time series datasets for clas-
sification evaluations, the proposed method produces basis
vectors that are more useful for signal reconstruction, ex-
hibiting a lower reconstruction error. These same basis vec-
tors also produce comparable or even more accurate classi-
fications than several state-of-the-art baseline methods..

There are several promising directions in extending the
work. First, the formulation of SIDL does not make any
assumptions about the input signals, such as smoothness,
sparsity or bounded norms [10]. If such assumptions are
true for the input signals, we can exploit these characteris-
tics to further improve the proposed method. Second, tem-
poral patterns may compress or stretch in time, and hence
incorporating dynamic time warping (DTW) [16, 11] into
the framework may further improve the process by normal-
izing the basis vectors. Third, it is possible to extend the
framework to take advantage of supervision such as partial
labeling of the input signals [12], to help identify local pat-
terns that are pertinent to the learning task. In addition,
one may also want to investigate initialization strategies of
the dictionaries and sparse codings based on priors (such
domain knowledge) about the input signal to improve the
resulting coding quality.

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments.

7. REFERENCES
[1] R. J. Alcock and Y. Manolopoulos. Time-series

similarity queries employing a feature-based approach.
In 7-th Hellenic Conference on Informatics, Ioannina,
pages 27–29, 1999.

[2] C. Bao, J. Cai, and H. Ji. Fast sparsity-based
orthogonal dictionary learning for image restoration.
In IEEE International Conference on Computer
Vision, ICCV 2013, Sydney, Australia, December 1-8,
2013, pages 3384–3391, 2013.

[3] C. Chang and C. Lin. LIBSVM: A library for support
vector machines. ACM TIST, 2(3):27, 2011.

[4] X. Chen, Z. Du, J. Li, X. Li, and H. Zhang.
Compressed sensing based on dictionary learning for
extracting impulse components. Signal Processing,
96:94–109, 2014.

2101

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 20, Class 1, Sparsity 0.25

Data

Basis 2

Basis 11

Reconstruction

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 47, Class 1, Sparsity 0.30

Data

Basis 11

Basis 18

Reconstruction

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 67, Class 2, Sparsity 0.10

Data

Basis 7

Basis 11

Reconstruction

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 77, Class 2, Sparsity 0.05

Data

Basis 5

Basis 7

Reconstruction

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 26, Class 3, Sparsity 0.10

Data

Basis 1

Basis 8

Reconstruction

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 95, Class 3, Sparsity 0.20

Data

Basis 6

Basis 20

Reconstruction

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 28, Class 4, Sparsity 0.25

Data

Basis 6

Basis 20

Reconstruction

0 100 200 300
-3

-2

-1

0

1

2

3

4
TS 52, Class 4, Sparsity 0.05

Data

Basis 1

Basis 17

Reconstruction

Figure 5: Sample time series in different classes from the Trace dataset (plotted in black). The reconstructed
signal with the learned basis is plotted in green. The most 2 active basis are also shown in their matching
location with the time series in red and blue.

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 11, Class 1, Sparsity 0.76

Data

Basis 27

Basis 40

Reconstruction

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 38, Class 1, Sparsity 0.80

Data

Basis 27

Basis 28

Reconstruction

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 49, Class 1, Sparsity 0.78

Data

Basis 39

Basis 48

Reconstruction

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 67, Class 1, Sparsity 0.78

Data

Basis 12

Basis 27

Reconstruction

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 26, Class 2, Sparsity 0.82

Data

Basis 5

Basis 21

Reconstruction

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 52, Class 2, Sparsity 0.72

Data

Basis 10

Basis 44

Reconstruction

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 104, Class 2, Sparsity 0.72

Data

Basis 5

Basis 40

Reconstruction

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TS 108, Class 2, Sparsity 0.74

Data

Basis 19

Basis 36

Reconstruction

Figure 6: Sample time series in different classes from the Gun Point dataset (plotted in black). The recon-
structed signal with the learned basis is plotted in green. The most 2 active basis are also shown in their
matching location with the time series in red and blue.

[5] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall,
A. Mueen, and G. Batista. The ucr time series
classification archive, July 2015.
www.cs.ucr.edu/˜eamonn/time series data/.

[6] I. Gkioulekas and T. E. Zickler. Dimensionality
reduction using the sparse linear model. In Advances
in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14
December 2011, Granada, Spain., pages 271–279, 2011.

[7] J. Grabocka, N. Schilling, M. Wistuba, and
L. Schmidt-Thieme. Learning time-series shapelets. In
The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14,

New York, NY, USA - August 24 - 27, 2014, pages
392–401, 2014.

[8] R. B. Grosse, R. Raina, H. Kwong, and A. Y. Ng.
Shift-invariance sparse coding for audio classification.
In UAI 2007, Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence,
Vancouver, BC, Canada, July 19-22, 2007, pages
149–158, 2007.

[9] Y. Huang, J. Paisley, Q. Lin, X. Ding, X. Fu, and
X. Zhang. Bayesian nonparametric dictionary learning
for compressed sensing MRI. IEEE Transactions on
Image Processing, 23(12):5007–5019, 2014.

[10] W. Jiang, F. Nie, and H. Huang. Robust dictionary
learning with capped l1-norm. In Proceedings of the

2102

www.cs.ucr.edu/~eamonn/time_series_data/

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 6, Class 1, Sparsity 0.16

Data

Basis 25

Basis 34

Reconstruction

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 19, Class 1, Sparsity 0.10

Data

Basis 31

Basis 42

Reconstruction

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 137, Class 1, Sparsity 0.20

Data

Basis 34

Basis 42

Reconstruction

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 278, Class 1, Sparsity 0.16

Data

Basis 21

Basis 43

Reconstruction

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 52, Class 2, Sparsity 0.20

Data

Basis 9

Basis 28

Reconstruction

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 132, Class 2, Sparsity 0.20

Data

Basis 9

Basis 41

Reconstruction

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 201, Class 2, Sparsity 0.22

Data

Basis 11

Basis 36

Reconstruction

0 50 100 150
-4

-3

-2

-1

0

1

2

3

4
TS 472, Class 2, Sparsity 0.16

Data

Basis 18

Basis 36

Reconstruction

Figure 7: Sample time series in different classes from the ECGFiveDays dataset (plotted in black). The
reconstructed signal with the learned basis is plotted in green. The most 2 active basis are also shown in
their matching location with the time series in red and blue.

Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 3590–3596, 2015.

[11] E. J. Keogh and M. J. Pazzani. Scaling up dynamic
time warping for datamining applications. In
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining,
Boston, MA, USA, August 20-23, 2000, pages
285–289, 2000.

[12] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and
A. Zisserman. Supervised dictionary learning. In
Advances in Neural Information Processing Systems
21, Proceedings of the Twenty-Second Annual
Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada,
December 8-11, 2008, pages 1033–1040, 2008.

[13] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and
A. Zisserman. Non-local sparse models for image
restoration. In IEEE 12th International Conference on
Computer Vision, ICCV 2009, Kyoto, Japan,
September 27 - October 4, 2009, pages 2272–2279,
2009.

[14] A. Mueen, E. J. Keogh, and N. E. Young.
Logical-shapelets: an expressive primitive for time
series classification. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Diego, CA, USA,
August 21-24, 2011, pages 1154–1162, 2011.

[15] R. Rubinstein, M. Zibulevsky, and M. Elad. Double
sparsity: learning sparse dictionaries for sparse signal
approximation. IEEE Transactions on Signal
Processing, 58(3):1553–1564, 2010.

[16] H. Sakoe and S. Chiba. Dynamic programming
algorithm optimization for spoken word recognition.
Acoustics, Speech and Signal Processing, IEEE
Transactions on, 26(1):43–49, 1978.

[17] K. Skretting and K. Engan. Image compression using

learned dictionaries by rls-dla and compared with
k-svd. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on,
pages 1517–1520. IEEE, 2011.

[18] C. Studer and R. G. Baraniuk. Dictionary learning
from sparsely corrupted or compressed signals. In
Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on, pages
3341–3344. IEEE, 2012.

[19] R. Tibshirani. Regression shrinkage and selection via
the lasso. J. R. Statist. Soc. B, 58:267–288, 1996.

[20] T. T. Wu and K. Lange. Coordinate descent
algorithms for lasso penalized regression. The Annals
of Applied Statistics, 2:1–21, 2008.

[21] Y. Wu and E. Y. Chang. Distance-function design and
fusion for sequence data. In Proceedings of the 2004
ACM CIKM International Conference on Information
and Knowledge Management, Washington, DC, USA,
November 8-13, 2004, pages 324–333, 2004.

[22] X. Xi, E. J. Keogh, C. R. Shelton, L. Wei, and C. A.
Ratanamahatana. Fast time series classification using
numerosity reduction. In Machine Learning,
Proceedings of the Twenty-Third International
Conference (ICML 2006), Pittsburgh, Pennsylvania,
USA, June 25-29, 2006, pages 1033–1040, 2006.

[23] L. Ye and E. J. Keogh. Time series shapelets: a new
primitive for data mining. In Proceedings of the 15th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009, pages 947–956, 2009.

[24] J. Zakaria, A. Mueen, and E. J. Keogh. Clustering
time series using unsupervised-shapelets. In 12th
IEEE International Conference on Data Mining,
ICDM 2012, Brussels, Belgium, December 10-13,
2012, pages 785–794, 2012.

2103

APPENDIX
A. PROOF OF PROPOSITION 4.1

Proof. Plugging Eq. (7) back to Eq. (6), there are three
cases:

• If |T (dk, tk)>x̂| ≤ λ, α∗k = 0 and the corresponding

value for Eq. (6) is
1

2
‖x̂‖2;

• If T (dk, tk)>x̂ > λ, then αk = T (dk,tk)
>x̂−λ

‖dk‖2
and we

now minimize the following objective over tk:

1

2

∥∥∥∥T (dk, tk)>x̂− λ
‖dk‖2

T (dk, tk)− x̂

∥∥∥∥2 + λ
T (dk, tk)>x̂− λ

‖dk‖2

=
1

2‖dk‖4

{∥∥∥T (dk, tk)T (dk, tk)>x̂
∥∥∥2 + ‖dk‖4‖x̂‖2

− 2λ‖dk‖2T (dk, tk)>x̂− 2‖dk‖2x̂>T (dk, tk)T (dk, tk)>x̂

+ λ2‖dk‖2 + 2λ‖dk‖2x̂>T (dk, tk) + 2λ‖dk‖2x̂>T (dk, tk)

− 2λ2‖dk‖2
}

=
1

2‖dk‖4

{
− ‖dk‖2x̂>T (dk, tk)T (dk, tk)>x̂ + ‖dk‖4‖x̂‖2

+ 2λ‖dk‖2T (dk, tk)>x̂− λ2‖dk‖2
}

=− ‖T (dk, tk)>x̂− λ‖2

2‖dk‖2
+

1

2
‖x̂‖2 (19)

where we extensively used the fact

T (dk, tk)>T (dk, tk) = ‖dk‖2 (20)

Since T (dk, tk)>x̂ > λ, Eq. (19) is monotonically de-
creasing in T (dk, tk), therefore to minimize Eq. (19)
we have

t∗k = arg max
tk

T (dk, tk)>x̂ (21)

• If T (dk, tk)>x̂ < −λ, then αk = T (dk,tk)
>x̂+λ

‖dk‖2
and like-

wise we have:

1

2

∥∥∥∥T (dk, tk)>x̂ + λ

‖dk‖2
T (dk, tk)− x̂

∥∥∥∥2 − λT (dk, tk)>x̂ + λ

‖dk‖2

=
1

2‖dk‖4

{∥∥∥T (dk, tk)T (dk, tk)>x̂
∥∥∥2 + ‖dk‖4‖x̂‖2

+ 2λ‖dk‖2T (dk, tk)>x̂− 2‖dk‖2x̂>T (dk, tk)T (dk, tk)>x̂

+ λ2‖dk‖2 − 2λ‖dk‖2x̂>T (dk, tk)− 2λ‖dk‖2x̂>T (dk, tk)

− 2λ2‖dk‖2
}

=
1

2‖dk‖4

{
− ‖dk‖2x̂>T (dk, tk)T (dk, tk)>x̂ + ‖dk‖4‖x̂‖2

− 2λ‖dk‖2T (dk, tk)>x̂− λ2‖dk‖2
}

=− ‖T (dk, tk)>x̂ + λ‖2

2‖dk‖2
+

1

2
‖x̂‖2 (22)

Since T (dk, tk)>x̂ < −λ, Eq. (22) is monotonically
increasing in T (dk, tk), therefore to minimize Eq. (22)

we have

t∗k = arg min
tk

T (dk, tk)>x̂ (23)

Aggregating the above three cases, since no matter which
range T (dk, tk)>x̂ lies in, Eq. (19) and Eq. (22) are both up-
per bounded by 1

2
‖x̂‖2, we arrive at the statement in Propo-

sition 4.1. �

B. PROOF OF EQUATION (15)
Proof. Plugging Eq. (14) of dk back to the Lagrangian

Eq. (13), we have

L(u) =
1

2

n∑
i=1

∥∥∥∥∥x̂i − αikT
(

x̃

2u+
∑n
j=1 α

2
jk

, tik

)∥∥∥∥∥
2

+ u

(
x̃>x̃

(2u+
∑n
j=1 α

2
jk)2

− c

)
(24)

Taking the derivative of L w.r.t u yields

L′(u) =−
∑n
i=1 2α2

ik(
2u+

∑n
i=1 α

2
jk

)3 x̃>x̃ +
2(

2u+
∑n
i=1 α

2
ik

)2 x̃>x̃

+
−2u+

∑n
i=1 α

2
ik(

2u+
∑n
i=1 α

2
ik

)3 x̃>x̃− c

=
1(

2u+
∑n
i=1 α

2
ik

)2 x̃>x̃− c (25)

From the KKT conditions, we also have u ≥ 0 and

u

(
1(

2u+
∑n
i=1 α

2
ik

)2 x̃>x̃− c

)
= 0 (26)

Hence

• if
‖x̃‖∑n
i=1 α

2
ik

≥
√
c, L′(u) can reach 0 when

u =
1

2

(
‖x̃‖2√
c
−

n∑
i=1

α2
ik

)
≥ 0 (27)

and the corresponding dk is

dk =

√
c

‖x̃‖ x̃ (28)

• If
‖x̃‖∑n
i=1 α

2
ik

<
√
c, L′(u) will always be negative, hence

to maximize the Lagrangian, u = 0 and the correspond-
ing dk is

dk =
1∑n

i=1 α
2
ik

x̃ (29)

�

2104

	Introduction
	Preliminaries
	Sparse Coding
	Dictionary Learning

	Shift-Invariant Dictionary Learning
	Model Learning for SIDL
	Shift-invariant sparse coding
	Shift-invariant dictionary update
	Complete algorithm
	Algorithm analysis
	Comparison to classical dictionary learning

	Experiments
	Data sets
	SIDL on data reconstruction
	Computational efficiency of SIDL
	Sparse coding from SIDL as features for classification
	Learned Dictionary

	Conclusions and Future Work
	References
	Proof of Proposition 4.1
	Proof of Equation (15)

