Research Directions in
Parallel Algorithms

Three of many:

1. Locality aware parallel algorithms

2. Interaction of languages and algorithms
3. Work efficient algorithms



Problem-Based Benchmark Suite

32
28
24
20
16
12

mT1/T32
Tseq/T32 Key to good
Efficiency
1. Work
2. Locality
O N\ > o Q/’é o0 \& % @ ‘00
NI A SO SN MO S 2 NPT
SR O S GRS N
'bo E}Q’ S < 0(\ N4 X, C—)Q S
S MR SEN, A M)
N\ R rbb& Qe k\fbo Q/’bK
N &% SR 2




“Efficient” Parallel Algorithms

NC Algorithms
— Polylogarithmic depth/span
— Polynomial work/size

Not a good model because

— Firstly: Work is primary concern

— Secondly: parallelism (work/depth) is what is
important. Polylogarithmic depth is not
necessary.



Why is work important

* Energy is proportional to work”

* Rental cost is proportional to resources used
(e.g. Amazon EC2)

* Importance of scaling down

"Note : “work” can be a variety of types of
operations: e.g. cache misses



What is a good definition?

An algorithm is efficient if:
— Polynomial parallelism

— Optimal work?
Or no more work than best sequential algorithm?



Example:
Single Source Shortest Paths

In NC:

— Can use Matrix multiply
— O(M(n) log n) work, O(log n) depth
Best work-efficient algorithm
— O(m + n log n) work, O(n) depth
— For sparse graphs only O(log n) parallelism

Is there an algorithm with O(m + n log n) work
and O(né€) parallelism (g > 0)?

NSF Research Directions



Other Examples

Constant factors in work, e.g. (1+€) factor

Worked hard to get MIS, MST and BFS to do little
more work than sequential algorithm.

Matrix Inversion:

Is there an algorithm that can invert in O(n'¢) depth
and O(M(n)) work?

Integer Sort: sort n integers in range [0..n¥)
— Work = O(1/epsilon n), Depth(n*epsilon)



