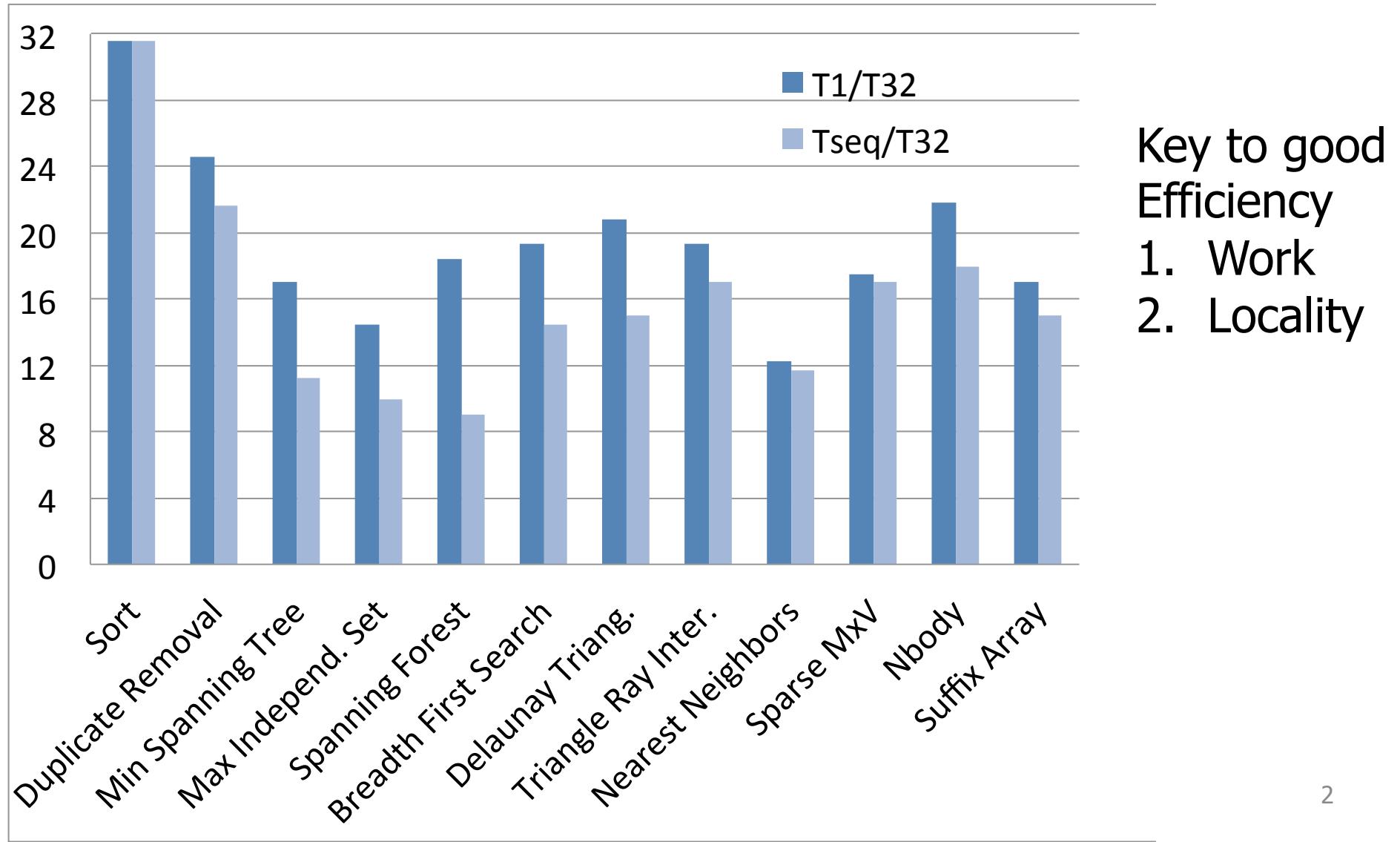


Research Directions in Parallel Algorithms

Three of many:

1. Locality aware parallel algorithms
2. Interaction of languages and algorithms
3. Work efficient algorithms

Problem-Based Benchmark Suite



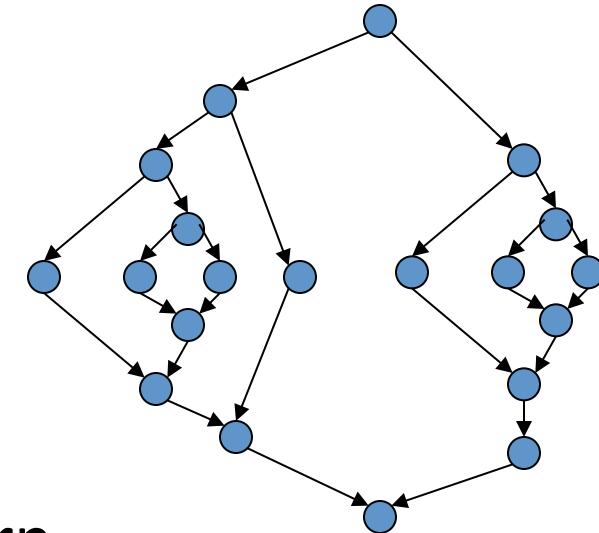
“Efficient” Parallel Algorithms

NC Algorithms

- Polylogarithmic depth/span
- Polynomial work/size

Not a good model because

- **Firstly:** Work is primary concern
- **Secondly:** parallelism (work/depth) is what is important. Polylogarithmic depth is not necessary.



Why is work important

- Energy is proportional to work*
- Rental cost is proportional to resources used (e.g. Amazon EC2)
- Importance of scaling down

*Note : “work” can be a variety of types of operations: e.g. cache misses

What is a good definition?

An algorithm is efficient if:

- Polynomial parallelism
- Optimal work?
 - Or no more work than best sequential algorithm?

Example: Single Source Shortest Paths

In NC:

- Can use Matrix multiply
- $O(M(n) \log n)$ work, $O(\log n)$ depth

Best work-efficient algorithm

- $O(m + n \log n)$ work, $O(n)$ depth
- For sparse graphs only $O(\log n)$ parallelism

Is there an algorithm with $O(m + n \log n)$ work and $O(n^\varepsilon)$ parallelism ($\varepsilon > 0$)?

Other Examples

Constant factors in work, e.g. $(1+\varepsilon)$ factor

Worked hard to get MIS, MST and BFS to do little more work than sequential algorithm.

Matrix Inversion:

Is there an algorithm that can invert in $O(n^{1-\varepsilon})$ depth and $O(M(n))$ work?

Integer Sort: sort n integers in range $[0..n^k]$

- Work = $O(1/\varepsilon n)$, Depth(n^ε)