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15-853:Algorithms in the Real World 

Data Compression: Lectures 1 and 2 

15-853 Page 2 

Compression in the Real World 
Generic File Compression 

–  Files: gzip (LZ77), bzip (Burrows-Wheeler),  
BOA (PPM) 

–  Archivers: ARC (LZW), PKZip (LZW+) 
–  File systems: NTFS 

Communication 
–  Fax: ITU-T Group 3  (run-length + Huffman) 
–  Modems: V.42bis protocol (LZW), 

MNP5 (run-length+Huffman) 
–  Virtual Connections 
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Compression in the Real World 
Multimedia 

–  Images: gif (LZW), jbig (context), 
jpeg-ls (residual), jpeg (transform+RL+arithmetic) 

–  Video: Blue-Ray, HDTV (mpeg-4), DVD (mpeg-2) 
–  Audio: iTunes, iPhone, PlayStation 3 (AAC) 

Other structures 
–  Indexes: google, lycos 
–  Meshes (for graphics): edgebreaker 
–  Graphs 
–  Databases 
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Compression Outline 
Introduction:  

–  Lossless vs. lossy 
–  Model and coder 
–  Benchmarks 

Information Theory: Entropy, etc. 
Probability Coding: Huffman + Arithmetic Coding 
Applications of Probability Coding: PPM + others 
Lempel-Ziv Algorithms: LZ77, gzip, compress, ... 
Other Lossless Algorithms: Burrows-Wheeler 
Lossy algorithms for images: JPEG, MPEG, ... 
Compressing graphs and meshes: BBK 
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Encoding/Decoding 
Will use “message” in generic sense to mean the data 

to be compressed 

Encoder Decoder Input 
Message 

Output 
Message 

Compressed 
Message 

The encoder and decoder need to understand 
common compressed format.  
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Lossless vs. Lossy 
Lossless: Input message = Output message 
Lossy: Input message ≈ Output message 

Lossy does not necessarily mean loss of quality. In 
fact the output could be “better” than the input. 
–  Drop random noise in images (dust on lens) 
–  Drop background in music 
–  Fix spelling errors in text.  Put into better 

form. 
Writing is the art of lossy text compression. 

15-853 Page 7 

How much can we compress? 
For lossless compression, assuming all input messages 

are valid, if even one string is compressed, some 
other must expand.   
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Model vs. Coder 
To compress we need a bias on the probability of 

messages.  The model determines this bias  

Model Coder 
Probs. Bits Messages 

Encoder 

Example models: 
–  Simple: Character counts, repeated strings 
–  Complex: Models of a human face 
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Quality of Compression 
Runtime vs. Compression vs. Generality 
Several standard corpuses to compare algorithms 
e.g. Calgary Corpus 
2 books, 5 papers, 1 bibliography,  

1 collection of news articles, 3 programs,  
1 terminal session, 2 object files,  
1 geophysical data, 1 bitmap bw image 

The Archive Comparison Test  and the 
Large Text Compression Benchmark  maintain a 
comparison of a broad set of compression algorithms. 

15-853 Page 10 

Comparison of Algorithms  
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Compression Outline 
Introduction: Lossy vs. Lossless, Benchmarks, … 
Information Theory:  

–  Entropy 
–  Conditional Entropy 
–  Entropy of the English Language 

Probability Coding: Huffman + Arithmetic Coding 
Applications of Probability Coding: PPM + others 
Lempel-Ziv Algorithms: LZ77, gzip, compress, ... 
Other Lossless Algorithms: Burrows-Wheeler 
Lossy algorithms for images: JPEG, MPEG, ... 
Compressing graphs and meshes: BBK 
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Information Theory 
An interface between modeling and coding 
Entropy 

–  A measure of information content 
Conditional Entropy 

–  Information content based on a context 
Entropy of the English Language 

–  How much information does each character in 
“typical” English text contain? 
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Entropy (Shannon 1948) 
For a set of messages S with probability p(s), s ∈S, 

the self information of s is: 

    Measured in bits if the log is base 2. 
The lower the probability, the higher the information 
Entropy is the weighted average of self information. 
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Entropy Example 
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Conditional Entropy  
The conditional probability p(s|c) is the probability of s 

in a context c.  The conditional self information is 

The conditional information can be either more or less 
than the unconditional information. 

The conditional entropy is the weighted average of the 
conditional self information 
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Example of a Markov Chain 

w b 

p(b|w) 

p(w|b) 

p(w|w) p(b|b) 
.9	



.1	



.2	



.8	
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Entropy of the English Language 
How can we measure the information per character? 

ASCII code = 7 
Entropy  = 4.5 (based on character probabilities) 
Huffman codes (average) = 4.7 
Unix Compress = 3.5 
Gzip = 2.6 
Bzip = 1.9 
Entropy = 1.3  (for “text compression test”) 

Must be less than 1.3 for English language. 
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Shannon’s experiment 
Asked humans to predict the next character given 

the whole previous text.  He used these as 
conditional probabilities to estimate the entropy 
of the English Language. 

The number of guesses required for right answer: 

From the experiment he predicted  
H(English) = .6-1.3 
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Compression Outline 
Introduction: Lossy vs. Lossless, Benchmarks, … 
Information Theory: Entropy, etc. 
Probability Coding: 

–  Prefix codes and relationship to Entropy 
–  Huffman codes 
–  Arithmetic codes 

Applications of Probability Coding: PPM + others 
Lempel-Ziv Algorithms: LZ77, gzip, compress, ... 
Other Lossless Algorithms: Burrows-Wheeler 
Lossy algorithms for images: JPEG, MPEG, ... 
Compressing graphs and meshes: BBK 
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Assumptions and Definitions 
Communication (or a file) is broken up into pieces 

called messages. 
Each message come from a message set S = {s1,…,sn} 

with a probability distribution p(s). 
Probabilities must sum to 1.  Set can be infinite. 

Code C(s): A mapping from a message set to 
codewords, each of which is a string of bits 

Message sequence: a sequence of messages 
Note: Adjacent messages might be of a different 

types and come from a different probability 
distributions 
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Discrete or Blended 
We will consider two types of coding: 
Discrete: each message is a fixed set of bits  

–  Huffman coding, Shannon-Fano coding 

Blended: bits can be “shared” among messages 
–  Arithmetic coding 

01001 11 011 0001 

message:     1       2      3      4 

010010111010 

message:     1,2,3, and 4 
15-853 Page 22 

Uniquely Decodable Codes 
A variable length code assigns a bit string (codeword) 

of variable length to every message value 
e.g. a = 1, b = 01, c = 101, d = 011 
What if you get the sequence of bits 
1011 ? 

Is it aba, ca, or, ad? 
A uniquely decodable code is a variable length code in 

which bit strings can always be uniquely decomposed 
into its codewords.  
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Prefix Codes 
A prefix code is a variable length code in which no 

codeword is a prefix of another word. 
e.g., a = 0, b = 110, c = 111, d = 10 
All prefix codes are uniquely decodable 
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Prefix Codes: as a tree 
Can be viewed as a binary tree with message values 

at the leaves and 0s or 1s on the edges: 

           a = 0, b = 110, c = 111, d = 10 

b c 

a 
d 

0 

1 

0 1 

1 

0 
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Some Prefix Codes for Integers 

Many other fixed prefix codes:  
   Golomb, phased-binary, subexponential, ... 
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Average Length 
For a code C  with associated probabilities p(c) the 

average length  is defined as 

We say that a prefix  code C is optimal if for all  
prefix codes C’,  la(C) ≤ la(C’) 

l(c)  = length of the codeword c (a positive integer)	
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Relationship to Entropy 
Theorem (lower bound): For any probability 

distribution p(S) with associated uniquely 
decodable code C, 

Theorem (upper bound): For any probability 
distribution p(S) with associated optimal prefix 
code C, 
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Kraft McMillan Inequality 
Theorem (Kraft-McMillan): For any uniquely 

decodable code C, 

Also, for any set of lengths L such that 

there is a prefix code C such that  
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Proof of the Upper Bound (Part 1) 
Assign each message a length: 
We then have 

So by the Kraft-McMillan inequality there is a prefix 
code with lengths l(s).  
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Proof of the Upper Bound (Part 2) 

Now we can calculate the average length given l(s) 

And we are done. 
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Another property of optimal codes 
Theorem: If C is an optimal prefix code for the 

probabilities {p1, …, pn} then pi > pj  
implies l(ci) ≤ l(cj) 

Proof: (by contradiction) 
Assume l(ci) > l(cj). Consider switching codes ci and 
cj.  If la is the average length of the original code, 
the length of the new code is 

This is a contradiction since la is not optimal 
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Huffman Codes 
Invented by Huffman as a class assignment in 1950. 
Used in many, if not most, compression algorithms 
gzip, bzip, jpeg (as option), fax compression,… 
Properties: 

–  Generates optimal prefix codes 
–  Cheap to generate codes 
–  Cheap to encode and decode  
–  la = H  if probabilities are powers of 2 
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Huffman Codes 
Huffman Algorithm: 
Start with a forest of trees each consisting of a 

single vertex corresponding to a message s and 
with weight p(s) 

Repeat until one tree left: 
–  Select two trees with minimum weight roots p1 

and p2 

–  Join into single tree by adding root with weight 
p1 + p2 
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Example 
p(a) = .1,  p(b) = .2,  p(c ) = .2,  p(d) = .5 

a(.1) b(.2) d(.5) c(.2) 

a(.1) b(.2) 

(.3) 

a(.1) b(.2) 

(.3) c(.2) 

a(.1) b(.2) 

(.3) c(.2) 

(.5) 
(.5) d(.5) 

(1.0) 

a=000,  b=001,  c=01, d=1 

0 

0 

0 

1 

1 

1 
Step 1 

Step 2 
Step 3 
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Encoding and Decoding 
Encoding: Start at leaf of Huffman tree and follow 

path to the root.  Reverse order of bits and send. 
Decoding: Start at root of Huffman tree and take 

branch for each bit received.  When at leaf can 
output message and return to root. 

a(.1) b(.2) 

(.3) c(.2) 

(.5) d(.5) 
(1.0) 

0 

0 

0 

1 

1 

1 

There are even faster methods that 
can process 8 or 32 bits at a time 
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Huffman codes are “optimal” 
Theorem: The Huffman algorithm generates an 

optimal prefix code. 
Proof outline: 
Induction on the number of messages n. 
Consider a message set S with n+1 messages 
1.  Can make it so least probable messages of S are 

neighbors in the Huffman tree  
2.  Replace the two messages with one message with 

probability p(m1) + p(m2) making S’ 
3.  Show that if S’ is optimal, then S is optimal 
4.  S’ is optimal by induction 
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Problem with Huffman Coding 
Consider a message with probability .999.  The self 

information of this message is  

If we were to send a 1000 such message we might 
hope to use 1000*.0014 = 1.44 bits. 

Using Huffman codes we require at least one bit per 
message, so we would require 1000 bits. 
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Arithmetic Coding: Introduction 
Allows “blending” of bits in a message sequence. 

Only requires 3 bits for the example 
Can bound total bits required based on sum of  self 

information: 

Used in PPM, JPEG/MPEG (as option), DMM 
More expensive than Huffman coding, but integer 

implementation is not too bad.   
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Arithmetic Coding: message intervals 
Assign each probability distribution to an interval 

range from 0 (inclusive) to 1 (exclusive). 
e.g. 

a = .2 

c = .3 

b = .5 

0.0	



0.2	



0.7	



1.0	



f(a) = .0,   f(b) = .2,   f(c) = .7 

The interval for a particular message will be called 
the message interval (e.g for b the interval is [.2,.7)) 
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Arithmetic Coding: sequence intervals 
Code a message sequence by composing intervals. 
For example: bac 

The final interval is [.27,.3) 
We call this the sequence interval 

a = .2 

c = .3 

b = .5 

0.0 

0.2 

0.7 

1.0 

a = .2 

c = .3 

b = .5 

0.2 

0.3 

0.55 

0.7 

a = .2 

c = .3 

b = .5 

0.2 

0.22 

0.27 

0.3 
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Arithmetic Coding: sequence intervals 
To code a sequence of messages with probabilities ���

pi (i = 1..n) use the following: 

Each message narrows the interval by a factor of pi. 

Final interval size: 

bottom of interval 
size of interval 
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Warning 
Three types of interval: 

–  message interval : interval for a single message 
–  sequence interval : composition of message 

intervals 
–  code interval : interval for a specific code used 

to represent a sequence interval (discussed 
later) 
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Uniquely defining an interval 
Important property:The sequence intervals for 

distinct message sequences of  length n will never 
overlap 

Therefore: specifying any number in the final 
interval uniquely determines the sequence. 

Decoding is similar to encoding, but on each step 
need to determine what the message value is and 
then reduce interval 
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Arithmetic Coding: Decoding Example 
Decoding the number .49, knowing the message is of 

length 3: 

The message is bbc. 

a = .2 

c = .3 

b = .5 

0.0 

0.2 

0.7 

1.0 

a = .2 

c = .3 

b = .5 

0.2 

0.3 

0.55 

0.7 

a = .2 

c = .3 

b = .5 

0.3 

0.35 

0.475 

0.55 

0.49 0.49 

0.49 



12	



15-853 Page 45 

Representing Fractions 
Binary fractional representation: 

So how about just using the smallest binary 
fractional representation in the sequence interval.   
e.g.  [0,.33) = .01    [.33,.66) = .1   [.66,1) = .11 

But what if you receive a 1? 
Should we wait for another 1?     
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Representing an Interval 
Can view binary fractional numbers as intervals by 

considering all completions.  e.g. 

We will call this the code interval. 

15-853 Page 47 

Code Intervals: example 
[0,.33) = .01    [.33,.66) = .1   [.66,1) = .11 

0 

1 

.01… 

.11… 
.1… 

Note that if code intervals overlap then one code is 
a prefix of the other. 

Lemma: If a set of code intervals do not overlap 
then the corresponding codes form a prefix code. 
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Selecting the Code Interval 
To find a prefix code find a binary fractional number 

whose code interval is contained in the sequence 
interval.   

Can use the fraction l + s/2 truncated to 

bits  

.61 

.79 

.625 

.75 
Sequence Interval Code Interval (.101) 



13	



15-853 Page 49 

Selecting a code interval: example 
[0,.33) = .001    [.33,.66) = .100   [.66,1) = .110 

.001 

.110 

e.g: for [.33…,.66…),  l = .33…, s = .33… 
        l + s/2 = .5 = .1000… 
truncated to                                            bits is .100 
Is this the best we can do for [0,.33) ? 

.33 

.66 

0 

1 

.100 
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RealArith Encoding and Decoding 
RealArithEncode: 
Determine l and s using original recurrences 
Code using l + s/2 truncated to 1+⎡-log s⎤ bits 
RealArithDecode: 
Read bits as needed so code interval falls within a 

message interval, and then narrow sequence 
interval. 

Repeat until n messages have been decoded . 
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Bound on Length 
Theorem: For n messages with self information {s1,

…,sn}  RealArithEncode will generate at most 

                 bits. 

Proof: 
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Integer Arithmetic Coding 
Problem with RealArithCode is that operations on 

arbitrary precision real numbers is expensive. 

Key Ideas of integer version: 
Keep integers in range [0..R) where R=2k 
Use rounding to generate integer sequence interval 
Whenever sequence interval falls into top, bottom or 

middle half, expand the interval by factor of 2  
This integer Algorithm is an approximation or the 

real algorithm. 
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Integer Arithmetic Coding  
The probability distribution as integers 
Probabilities as counts: 

e.g. c(a) = 11,  c(b) = 7, c(c) = 30 
T is the sum of counts  

e.g. 48 (11+7+30) 
Partial sums f as before: 

e.g. f(a) = 0,   f(b) = 11,   f(c) = 18 
Require that R > 4T so that 

probabilities do not get rounded to 
zero a = 11 

c = 30 

b = 7 

0 

11 
18 

T=48 

R=256 
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Integer Arithmetic (contracting) 
        l1 = 0,  s1 = R 

0 

R=256 

u 

l  
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Integer Arithmetic (scaling) 
If l ≥  R/2 then  (in top half) 

Output 1 followed by m 0s 
m = 0 
Scale message interval by expanding by 2 

If u < R/2 then (in bottom half) 
Output 0 followed by m  1s 
m = 0 
Scale message interval by expanding by 2 

If l ≥  R/4 and u < 3R/4 then (in middle half) 
Increment m 
Scale message interval by expanding by 2  


