
1	

15-853 Page 1

15-853:Algorithms in the Real World

Data Compression: Lectures 1 and 2

15-853 Page 2

Compression in the Real World
Generic File Compression

–  Files: gzip (LZ77), bzip (Burrows-Wheeler),
BOA (PPM)

–  Archivers: ARC (LZW), PKZip (LZW+)
–  File systems: NTFS

Communication
–  Fax: ITU-T Group 3 (run-length + Huffman)
–  Modems: V.42bis protocol (LZW),

MNP5 (run-length+Huffman)
–  Virtual Connections

15-853 Page 3

Compression in the Real World
Multimedia

–  Images: gif (LZW), jbig (context),
jpeg-ls (residual), jpeg (transform+RL+arithmetic)

–  Video: Blue-Ray, HDTV (mpeg-4), DVD (mpeg-2)
–  Audio: iTunes, iPhone, PlayStation 3 (AAC)

Other structures
–  Indexes: google, lycos
–  Meshes (for graphics): edgebreaker
–  Graphs
–  Databases

15-853 Page 4

Compression Outline
Introduction:

–  Lossless vs. lossy
–  Model and coder
–  Benchmarks

Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

2	

15-853 Page 5

Encoding/Decoding
Will use “message” in generic sense to mean the data

to be compressed

Encoder Decoder Input
Message

Output
Message

Compressed
Message

The encoder and decoder need to understand
common compressed format.

15-853 Page 6

Lossless vs. Lossy
Lossless: Input message = Output message
Lossy: Input message ≈ Output message

Lossy does not necessarily mean loss of quality. In
fact the output could be “better” than the input.
–  Drop random noise in images (dust on lens)
–  Drop background in music
–  Fix spelling errors in text. Put into better

form.
Writing is the art of lossy text compression.

15-853 Page 7

How much can we compress?
For lossless compression, assuming all input messages

are valid, if even one string is compressed, some
other must expand.

15-853 Page 8

Model vs. Coder
To compress we need a bias on the probability of

messages. The model determines this bias

Model Coder
Probs. Bits Messages

Encoder

Example models:
–  Simple: Character counts, repeated strings
–  Complex: Models of a human face

3	

15-853 Page 9

Quality of Compression
Runtime vs. Compression vs. Generality
Several standard corpuses to compare algorithms
e.g. Calgary Corpus
2 books, 5 papers, 1 bibliography,

1 collection of news articles, 3 programs,
1 terminal session, 2 object files,
1 geophysical data, 1 bitmap bw image

The Archive Comparison Test and the
Large Text Compression Benchmark maintain a
comparison of a broad set of compression algorithms.

15-853 Page 10

Comparison of Algorithms

15-853 Page 11

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory:

–  Entropy
–  Conditional Entropy
–  Entropy of the English Language

Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 12

Information Theory
An interface between modeling and coding
Entropy

–  A measure of information content
Conditional Entropy

–  Information content based on a context
Entropy of the English Language

–  How much information does each character in
“typical” English text contain?

4	

15-853 Page 13

Entropy (Shannon 1948)
For a set of messages S with probability p(s), s ∈S,

the self information of s is:

 Measured in bits if the log is base 2.
The lower the probability, the higher the information
Entropy is the weighted average of self information.

15-853 Page 14

Entropy Example

15-853 Page 15

Conditional Entropy
The conditional probability p(s|c) is the probability of s

in a context c. The conditional self information is

The conditional information can be either more or less
than the unconditional information.

The conditional entropy is the weighted average of the
conditional self information

15-853 Page 16

Example of a Markov Chain

w b

p(b|w)

p(w|b)

p(w|w) p(b|b)
.9	

.1	

.2	

.8	

5	

15-853 Page 17

Entropy of the English Language
How can we measure the information per character?

ASCII code = 7
Entropy = 4.5 (based on character probabilities)
Huffman codes (average) = 4.7
Unix Compress = 3.5
Gzip = 2.6
Bzip = 1.9
Entropy = 1.3 (for “text compression test”)

Must be less than 1.3 for English language.

15-853 Page 18

Shannon’s experiment
Asked humans to predict the next character given

the whole previous text. He used these as
conditional probabilities to estimate the entropy
of the English Language.

The number of guesses required for right answer:

From the experiment he predicted
H(English) = .6-1.3

15-853 Page 19

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding:

–  Prefix codes and relationship to Entropy
–  Huffman codes
–  Arithmetic codes

Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 20

Assumptions and Definitions
Communication (or a file) is broken up into pieces

called messages.
Each message come from a message set S = {s1,…,sn}

with a probability distribution p(s).
Probabilities must sum to 1. Set can be infinite.

Code C(s): A mapping from a message set to
codewords, each of which is a string of bits

Message sequence: a sequence of messages
Note: Adjacent messages might be of a different

types and come from a different probability
distributions

6	

15-853 Page 21

Discrete or Blended
We will consider two types of coding:
Discrete: each message is a fixed set of bits

–  Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
–  Arithmetic coding

01001 11 011 0001

message: 1 2 3 4

010010111010

message: 1,2,3, and 4
15-853 Page 22

Uniquely Decodable Codes
A variable length code assigns a bit string (codeword)

of variable length to every message value
e.g. a = 1, b = 01, c = 101, d = 011
What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?
A uniquely decodable code is a variable length code in

which bit strings can always be uniquely decomposed
into its codewords.

15-853 Page 23

Prefix Codes
A prefix code is a variable length code in which no

codeword is a prefix of another word.
e.g., a = 0, b = 110, c = 111, d = 10
All prefix codes are uniquely decodable

15-853 Page 24

Prefix Codes: as a tree
Can be viewed as a binary tree with message values

at the leaves and 0s or 1s on the edges:

 a = 0, b = 110, c = 111, d = 10

b c

a
d

0

1

0 1

1

0

7	

15-853 Page 25

Some Prefix Codes for Integers

Many other fixed prefix codes:
 Golomb, phased-binary, subexponential, ...

15-853 Page 26

Average Length
For a code C with associated probabilities p(c) the

average length is defined as

We say that a prefix code C is optimal if for all
prefix codes C’, la(C) ≤ la(C’)

l(c) = length of the codeword c (a positive integer)	

15-853 Page 27

Relationship to Entropy
Theorem (lower bound): For any probability

distribution p(S) with associated uniquely
decodable code C,

Theorem (upper bound): For any probability
distribution p(S) with associated optimal prefix
code C,

15-853 Page 28

Kraft McMillan Inequality
Theorem (Kraft-McMillan): For any uniquely

decodable code C,

Also, for any set of lengths L such that

there is a prefix code C such that

8	

15-853 Page 29

Proof of the Upper Bound (Part 1)
Assign each message a length:
We then have

So by the Kraft-McMillan inequality there is a prefix
code with lengths l(s).

15-853 Page 30

Proof of the Upper Bound (Part 2)

Now we can calculate the average length given l(s)

And we are done.

15-853 Page 31

Another property of optimal codes
Theorem: If C is an optimal prefix code for the

probabilities {p1, …, pn} then pi > pj
implies l(ci) ≤ l(cj)

Proof: (by contradiction)
Assume l(ci) > l(cj). Consider switching codes ci and
cj. If la is the average length of the original code,
the length of the new code is

This is a contradiction since la is not optimal

15-853 Page 32

Huffman Codes
Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms
gzip, bzip, jpeg (as option), fax compression,…
Properties:

–  Generates optimal prefix codes
–  Cheap to generate codes
–  Cheap to encode and decode
–  la = H if probabilities are powers of 2

9	

15-853 Page 33

Huffman Codes
Huffman Algorithm:
Start with a forest of trees each consisting of a

single vertex corresponding to a message s and
with weight p(s)

Repeat until one tree left:
–  Select two trees with minimum weight roots p1

and p2

–  Join into single tree by adding root with weight
p1 + p2

15-853 Page 34

Example
p(a) = .1, p(b) = .2, p(c) = .2, p(d) = .5

a(.1) b(.2) d(.5) c(.2)

a(.1) b(.2)

(.3)

a(.1) b(.2)

(.3) c(.2)

a(.1) b(.2)

(.3) c(.2)

(.5)
(.5) d(.5)

(1.0)

a=000, b=001, c=01, d=1

0

0

0

1

1

1
Step 1

Step 2
Step 3

15-853 Page 35

Encoding and Decoding
Encoding: Start at leaf of Huffman tree and follow

path to the root. Reverse order of bits and send.
Decoding: Start at root of Huffman tree and take

branch for each bit received. When at leaf can
output message and return to root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1

There are even faster methods that
can process 8 or 32 bits at a time

15-853 Page 36

Huffman codes are “optimal”
Theorem: The Huffman algorithm generates an

optimal prefix code.
Proof outline:
Induction on the number of messages n.
Consider a message set S with n+1 messages
1.  Can make it so least probable messages of S are

neighbors in the Huffman tree
2.  Replace the two messages with one message with

probability p(m1) + p(m2) making S’
3.  Show that if S’ is optimal, then S is optimal
4.  S’ is optimal by induction

10	

15-853 Page 37

Problem with Huffman Coding
Consider a message with probability .999. The self

information of this message is

If we were to send a 1000 such message we might
hope to use 1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per
message, so we would require 1000 bits.

15-853 Page 38

Arithmetic Coding: Introduction
Allows “blending” of bits in a message sequence.

Only requires 3 bits for the example
Can bound total bits required based on sum of self

information:

Used in PPM, JPEG/MPEG (as option), DMM
More expensive than Huffman coding, but integer

implementation is not too bad.

15-853 Page 39

Arithmetic Coding: message intervals
Assign each probability distribution to an interval

range from 0 (inclusive) to 1 (exclusive).
e.g.

a = .2

c = .3

b = .5

0.0	

0.2	

0.7	

1.0	

f(a) = .0, f(b) = .2, f(c) = .7

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))

15-853 Page 40

Arithmetic Coding: sequence intervals
Code a message sequence by composing intervals.
For example: bac

The final interval is [.27,.3)
We call this the sequence interval

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.22

0.27

0.3

11	

15-853 Page 41

Arithmetic Coding: sequence intervals
To code a sequence of messages with probabilities ���

pi (i = 1..n) use the following:

Each message narrows the interval by a factor of pi.

Final interval size:

bottom of interval
size of interval

15-853 Page 42

Warning
Three types of interval:

–  message interval : interval for a single message
–  sequence interval : composition of message

intervals
–  code interval : interval for a specific code used

to represent a sequence interval (discussed
later)

15-853 Page 43

Uniquely defining an interval
Important property:The sequence intervals for

distinct message sequences of length n will never
overlap

Therefore: specifying any number in the final
interval uniquely determines the sequence.

Decoding is similar to encoding, but on each step
need to determine what the message value is and
then reduce interval

15-853 Page 44

Arithmetic Coding: Decoding Example
Decoding the number .49, knowing the message is of

length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49 0.49

0.49

12	

15-853 Page 45

Representing Fractions
Binary fractional representation:

So how about just using the smallest binary
fractional representation in the sequence interval.
e.g. [0,.33) = .01 [.33,.66) = .1 [.66,1) = .11

But what if you receive a 1?
Should we wait for another 1?

15-853 Page 46

Representing an Interval
Can view binary fractional numbers as intervals by

considering all completions. e.g.

We will call this the code interval.

15-853 Page 47

Code Intervals: example
[0,.33) = .01 [.33,.66) = .1 [.66,1) = .11

0

1

.01…

.11…
.1…

Note that if code intervals overlap then one code is
a prefix of the other.

Lemma: If a set of code intervals do not overlap
then the corresponding codes form a prefix code.

15-853 Page 48

Selecting the Code Interval
To find a prefix code find a binary fractional number

whose code interval is contained in the sequence
interval.

Can use the fraction l + s/2 truncated to

bits

.61

.79

.625

.75
Sequence Interval Code Interval (.101)

13	

15-853 Page 49

Selecting a code interval: example
[0,.33) = .001 [.33,.66) = .100 [.66,1) = .110

.001

.110

e.g: for [.33…,.66…), l = .33…, s = .33…
 l + s/2 = .5 = .1000…
truncated to bits is .100
Is this the best we can do for [0,.33) ?

.33

.66

0

1

.100

15-853 Page 50

RealArith Encoding and Decoding
RealArithEncode:
Determine l and s using original recurrences
Code using l + s/2 truncated to 1+⎡-log s⎤ bits
RealArithDecode:
Read bits as needed so code interval falls within a

message interval, and then narrow sequence
interval.

Repeat until n messages have been decoded .

15-853 Page 51

Bound on Length
Theorem: For n messages with self information {s1,

…,sn} RealArithEncode will generate at most

 bits.

Proof:

15-853 Page 52

Integer Arithmetic Coding
Problem with RealArithCode is that operations on

arbitrary precision real numbers is expensive.

Key Ideas of integer version:
Keep integers in range [0..R) where R=2k
Use rounding to generate integer sequence interval
Whenever sequence interval falls into top, bottom or

middle half, expand the interval by factor of 2
This integer Algorithm is an approximation or the

real algorithm.

14	

15-853 Page 53

Integer Arithmetic Coding
The probability distribution as integers
Probabilities as counts:

e.g. c(a) = 11, c(b) = 7, c(c) = 30
T is the sum of counts

e.g. 48 (11+7+30)
Partial sums f as before:

e.g. f(a) = 0, f(b) = 11, f(c) = 18
Require that R > 4T so that

probabilities do not get rounded to
zero a = 11

c = 30

b = 7

0

11
18

T=48

R=256

15-853 Page 54

Integer Arithmetic (contracting)
 l1 = 0, s1 = R

0

R=256

u

l

15-853 Page 55

Integer Arithmetic (scaling)
If l ≥ R/2 then (in top half)

Output 1 followed by m 0s
m = 0
Scale message interval by expanding by 2

If u < R/2 then (in bottom half)
Output 0 followed by m 1s
m = 0
Scale message interval by expanding by 2

If l ≥ R/4 and u < 3R/4 then (in middle half)
Increment m
Scale message interval by expanding by 2

