

Quality of Compression

Runtime vs. Compression vs. Generality Several standard corpuses to compare algorithms

e.g. Calgary Corpus

2 books, 5 papers, 1 bibliography, 1 collection of news articles, 3 programs, 1 terminal session, 2 object files, 1 geophysical data, 1 bitmap bw image

The <u>Archive Comparison Test</u> and the <u>Large Text Compression Benchmark</u> maintain a comparison of a broad set of compression algorithms.

15-853

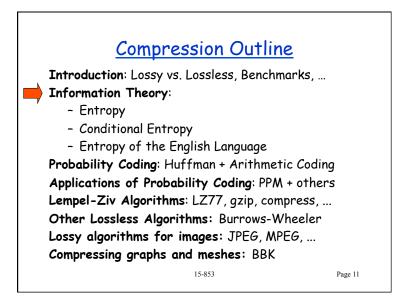
Page 9

Comparison of Algorithms

Program	Algorithm	Time	BPC	Score
RK	LZ + PPM	111+115	1.79	430
BOA	PPM Var.	94+97	1.91	407
PPMD	PPM	11+20	2.07	265
IMP	BW	10+3	2.14	254
BZIP	BW	20+6	2.19	273
GZIP	LZ77 Var.	19+5	2.59	318
LZ77	LZ77	?	3.94	?

15-853

Page 10



<u>Information Theory</u> An interface between modeling and coding <u>Entropy</u> - A measure of information content <u>Conditional Entropy</u> - Information content based on a context

- Information content based on a con
- Entropy of the English Language
 - How much information does each character in "typical" English text contain?

15-853

Page 12

Entropy (Shannon 1948)

For a set of messages S with probability p(s), $s \in S$, the <u>self information</u> of s is:

$$i(s) = \log \frac{1}{p(s)} = -\log p(s)$$

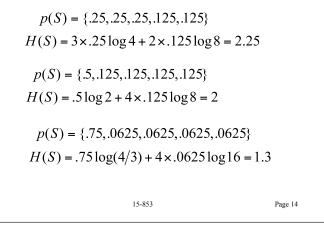
Measured in bits if the log is base 2. The lower the probability, the higher the information <u>Entropy</u> is the weighted average of self information.

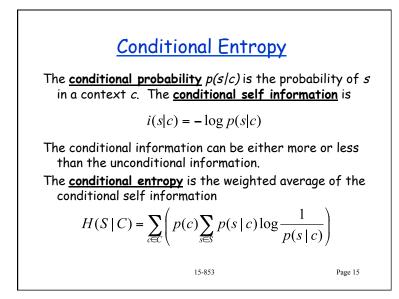
$$H(S) = \sum_{s \in S} p(s) \log \frac{1}{p(s)}$$

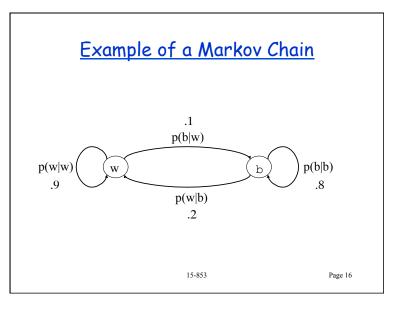
15-853

Page 13

Entropy Example







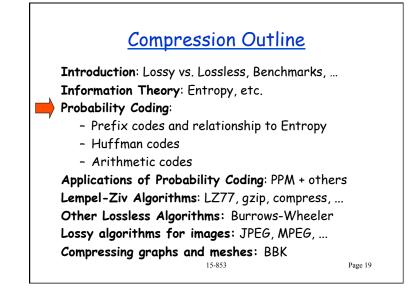
Entropy of the English Language

How can we measure the information per character? ASCII code = 7 Entropy = 4.5 (based on character probabilities) Huffman codes (average) = 4.7 Unix Compress = 3.5 Gzip = 2.6 Bzip = 1.9 Entropy = 1.3 (for "text compression test") Must be less than 1.3 for English language.

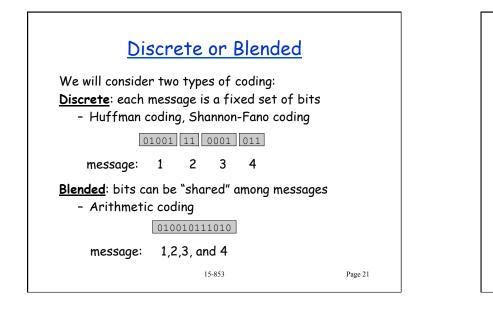
15-853

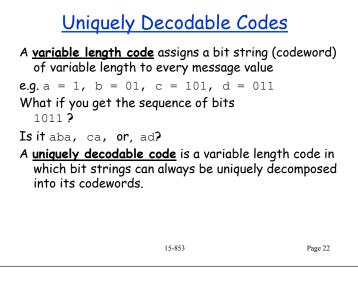
Page 17

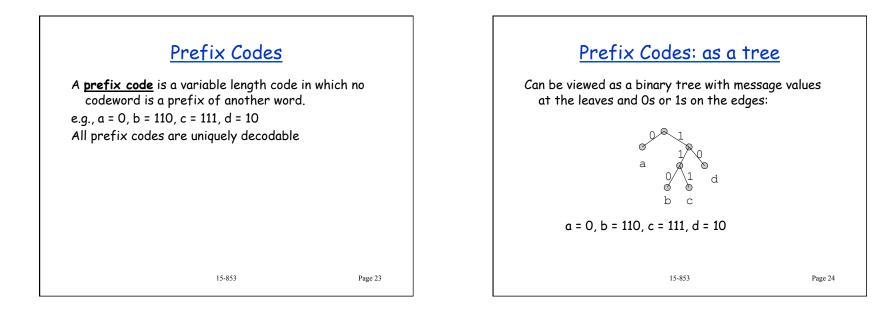
<text><text><text><equation-block><text><text><text><text>



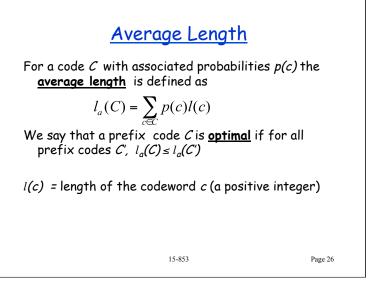
<text><text><text><text><text><text><text><text>

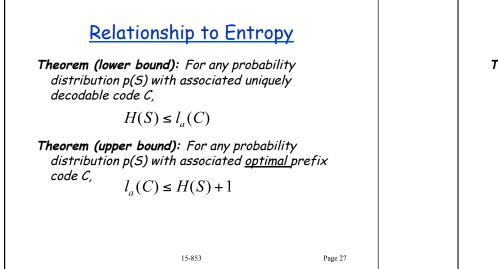


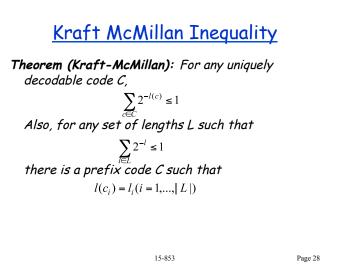


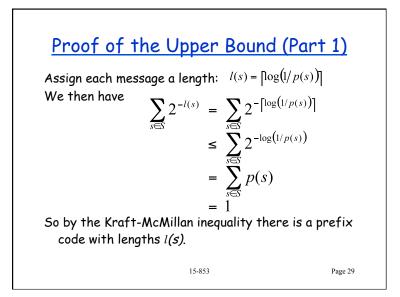


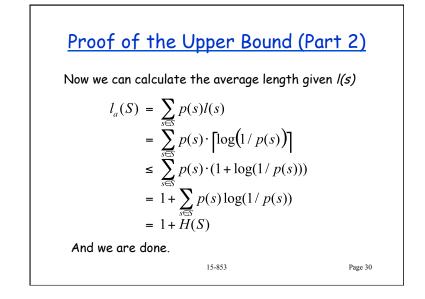
n	Binary	Unary	Gamma
1	001	0	0
2	010	10	10 0
3	011	110	10 1
4	100	1110	110 00
5	101	11110	110 01
6	110	111110	110 10







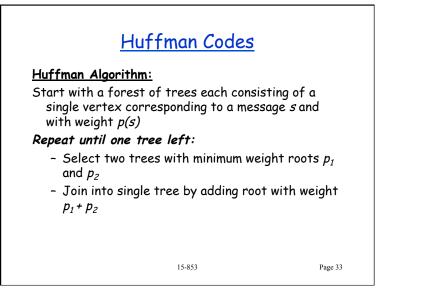


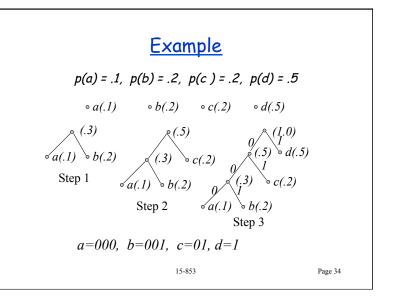


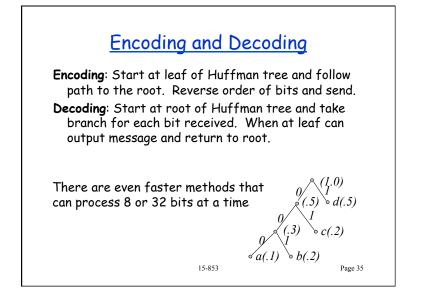
<text><text><text><text><equation-block><equation-block><text><text>

Huffman Codes
Invented by Huffman as a class assignment in 1950. Used in many, if not most, compression algorithms gip, bzip, jpeg (as option), fax compression,...
Properties:

Generates optimal prefix codes
Cheap to generate codes
Cheap to encode and decode
I_a = H if probabilities are powers of 2







Huffman codes are "optimal"

Theorem: The Huffman algorithm generates an optimal prefix code.

Proof outline:

Induction on the number of messages n.

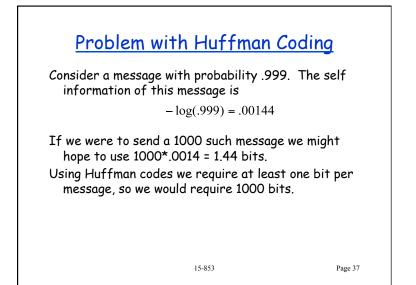
Consider a message set S with n+1 messages

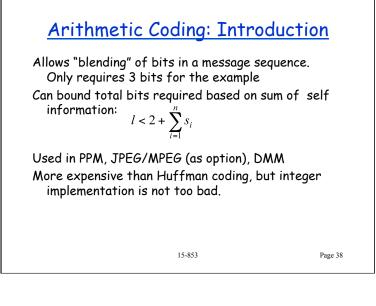
- 1. Can make it so least probable messages of S are neighbors in the Huffman tree
- 2. Replace the two messages with one message with probability $p(m_1) + p(m_2)$ making S'

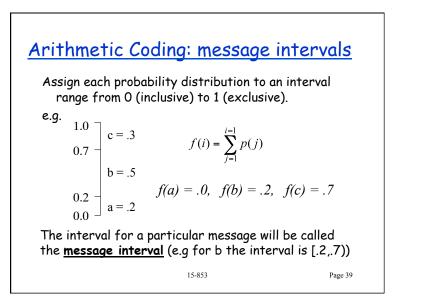
15-853

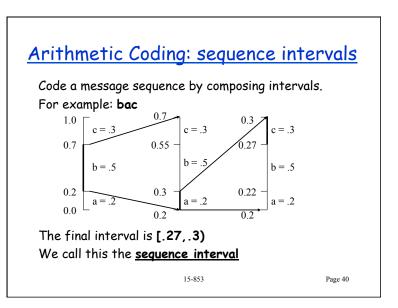
- 3. Show that if S' is optimal, then S is optimal
- 4. S' is optimal by induction

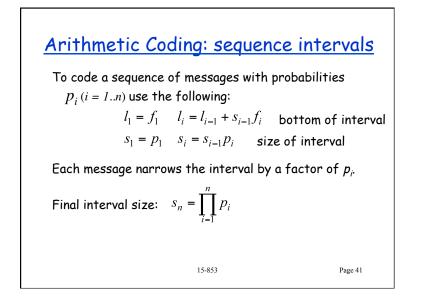
Page 36

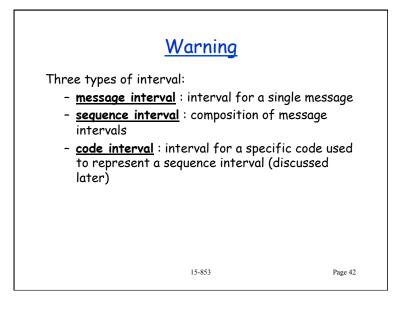


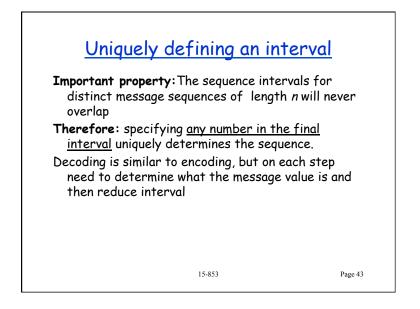


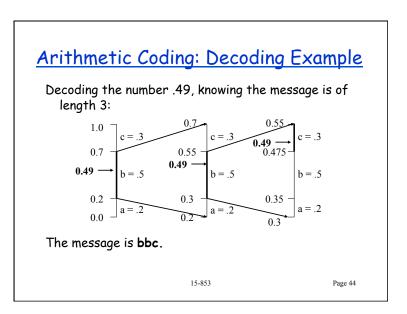


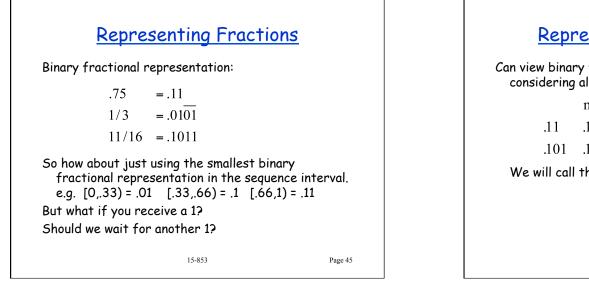


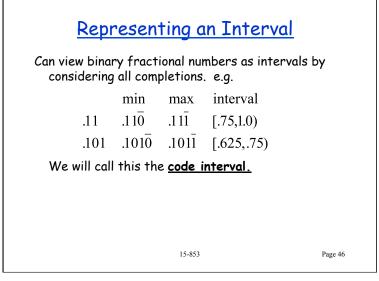


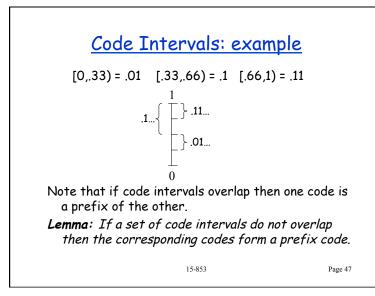


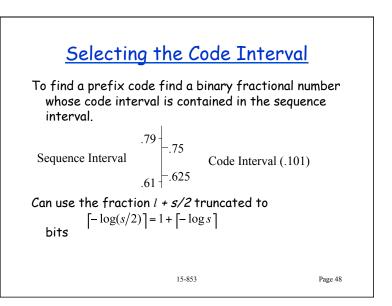


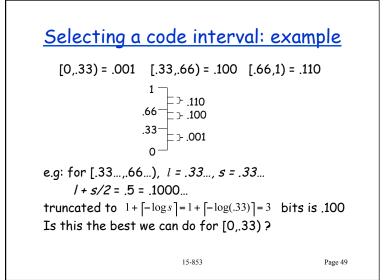


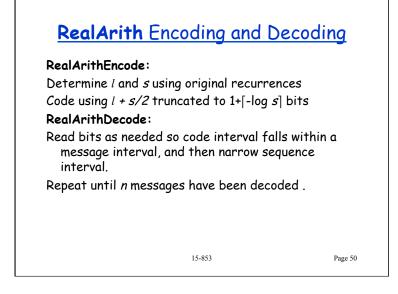


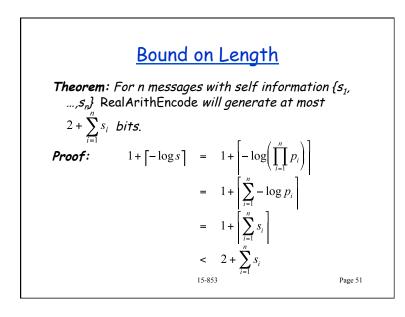












Integer Arithmetic Coding

Problem with RealArithCode is that operations on arbitrary precision real numbers is expensive.

Key Ideas of integer version:

Keep integers in range [0..R) where R=2^k
Use rounding to generate integer sequence interval
Whenever sequence interval falls into top, bottom or middle half, expand the interval by factor of 2
This integer Algorithm is an approximation or the real algorithm.

15-853

Page 52

