
1

15-853 Page 1

15-853:Algorithms in the Real World

Data Compression III

15-853 Page 2

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms:

– LZ77, gzip,
– LZ78, compress (Not covered in class)

Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 3

Lempel-Ziv Algorithms
LZ77 (Sliding Window)

Variants: LZSS (Lempel-Ziv-Storer-Szymanski)
Applications: gzip, Squeeze, LHA, PKZIP, ZOO

LZ78 (Dictionary Based)
Variants: LZW (Lempel-Ziv-Welch), LZC
Applications: compress, GIF, CCITT (modems),

ARC, PAK

Traditionally LZ77 was better but slower, but the
gzip version is almost as fast as any LZ78.

15-853 Page 4

LZ77: Sliding Window Lempel-Ziv

Dictionary and buffer “windows” are fixed length
and slide with the cursor

Repeat:
Output (p, l, c) where

p = position of the longest match that starts in
the dictionary (relative to the cursor)
l = length of longest match
c = next char in buffer beyond longest match

Advance window by l + 1

a a c a a c a b c a b a b a c

Dictionary
(previously coded)

Lookahead
Buffer

Cursor

2

15-853 Page 5

LZ77: Example
a a c a a c a b c a b a a a c (_,0,a)

a a c a a c a b c a b a a a c (1,1,c)

a a c a a c a b c a b a a a c (3,4,b)

a a c a a c a b c a b a a a c (3,3,a)

a a c a a c a b c a b a a a c (1,2,c)

Dictionary (size = 6) Longest match

Next characterBuffer (size = 4)

15-853 Page 6

LZ77 Decoding
Decoder keeps same dictionary window as encoder.
For each message it looks it up in the dictionary and

inserts a copy at the end of the string
What if l > p? (only part of the message is in the

dictionary.)
E.g. dict = abcd, codeword = (2,9,e)

• Simply copy from left to right
for (i = 0; i < length; i++)

out[cursor+i] = out[cursor-offset+i]

• Out = abcdcdcdcdcdce

15-853 Page 7

LZ77 Optimizations used by gzip
LZSS: Output one of the following two formats

(0, position, length) or (1,char)
Uses the second format if length < 3.

a a c a a c a b c a b a a a c (1,a)

a a c a a c a b c a b a a a c (1,a)

a a c a a c a b c a b a a a c (0,3,4)

a a c a a c a b c a b a a a c (1,c)

15-853 Page 8

Optimizations used by gzip (cont.)
1. Huffman code the positions, lengths and chars
2. Non greedy: possibly use shorter match so that

next match is better
3. Use a hash table to store the dictionary.

– Hash keys are all strings of length 3 in the
dictionary window.

– Find the longest match within the correct
hash bucket.

– Puts a limit on the length of the search within
a bucket.

– Within each bucket store in order of position

3

15-853 Page 9

The Hash Table

a a c a a c a b c a b a a a c

7 8 9 101112131415161718192021… …

……

a a c 19

a a c 10

a a c 7 a c a 8

a c a 11

c a a 9

c a b 15

c a b 12

…

15-853 Page 10

Theory behind LZ77
Sliding Window LZ is Asymptotically Optimal

[Wyner-Ziv,94]
Will compress long enough strings to the source

entropy as the window size goes to infinity.

∑
∈

=
nAX

n Xp
XpH

)(
1log)(

nn
HH

∞→
= lim

Uses logarithmic code (e.g. gamma) for the position.
Problem: “long enough” is really really long.

15-853 Page 11

Comparison to Lempel-Ziv 78
Both LZ77 and LZ78 and their variants keep a

“dictionary” of recent strings that have been seen.
The differences are:

– How the dictionary is stored (LZ78 is a trie)
– How it is extended (LZ78 only extends an existing

entry by one character)
– How it is indexed (LZ78 indexes the nodes of the

trie)
– How elements are removed

15-853 Page 12

Lempel-Ziv Algorithms Summary
Adapts well to changes in the file (e.g. a Tar file with

many file types within it).
Initial algorithms did not use probability coding and

performed poorly in terms of compression. More
modern versions (e.g. gzip) do use probability
coding as “second pass” and compress much better.

The algorithms are becoming outdated, but ideas are
used in many of the newer algorithms.

4

15-853 Page 13

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, …
Other Lossless Algorithms:

– Burrows-Wheeler
– ACB

Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 14

Burrows -Wheeler
Currently near best “balanced” algorithm for text
Breaks file into fixed-size blocks and encodes each

block separately.
For each block:

– Sort each character by its full context.
This is called the block sorting transform.

– Use move-to-front transform to encode the
sorted characters.

The ingenious observation is that the decoder only
needs the sorted characters and a pointer to the
first character of the original sequence.

15-853 Page 15

Burrows Wheeler: Example
Let’s encode: d1e2c3o4d5e6
We’ve numbered the characters to distinguish them.
Context “wraps” around. Last char is most significant.

Context Char
ecode6 d1
coded1 e2
odede2 c3
dedec3 o4
edeco4 d5
decod5 e6

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 ⇐
edeco4 d5

Sort
Context

15-853 Page 16

Burrows-Wheeler (Continued)
Theorem: After sorting, equal valued characters

appear in the same order in the output as in the
most significant position of the context.

Proof sketch: Since the chars have
equal value in the most-significant-
position of the context, they will
be ordered by the rest of the
context, i.e. the previous chars.
This is also the order of the output
since it is sorted by the previous
characters.

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1
edeco 4 d5

5

15-853 Page 17

Burrows-Wheeler: Decoding
Consider dropping all but the last

character of the context.
– What follows the

underlined a ?
– What follows the

underlined b?
– What is the whole string?

ac

ab

ab

ba

ba

ca
OutputContext

Answer: b, a, abacab
⇐

15-853 Page 18

Burrows-Wheeler: Decoding
What about now?

a

a

b

b

a

c
Output

Answer: cabbaa ⇐

c

b

b

a

a

a
Context

3

2

5

4

1

6
Rank

Can also use the “rank”.
The “rank” is the position

of a character if it were
sorted using a stable
sort.

15-853 Page 19

Burrows-Wheeler Decode
Function BW_Decode(In, Start, n)

S = MoveToFrontDecode(In,n)
R = Rank(S)
j = Start
for i=1 to n do

Out[i] = S[j]
j = R[j]

Rank gives position of each char in sorted order.

15-853 Page 20

Decode Example

 Out
e6 d1 ⇐
d1 e2
e2 c3
c3 o4
o4 d5
d5 e6

 3d5

2d1

1c3

5e6

4e2

6o4

Rank(S)S

(

6

15-853 Page 21

Overview of Text Compression
PPM and Burrows-Wheeler both encode a single

character based on the immediately preceding
context.

LZ77 and LZ78 encode multiple characters based on
matches found in a block of preceding text

Can you mix these ideas, i.e., code multiple
characters based on immediately preceding
context?
– BZ does this, but they don’t give details on how

it works – current best compressor
– ACB also does this – close to best

15-853 Page 22

ACB (Associate Coder of Buyanovsky)

Context Contents
decode

dec ode
d ecode

decod e
de code

deco de

Keep dictionary sorted by context
(the last character is the most
significant)

• Find longest match for context
• Find longest match for contents
• Code

• Distance between matches in
the sorted order

• Length of contents match
Has aspects of Burrows-Wheeler,

and LZ77

