Algorithms in the Real World (15-853) Solutions for Assignment # 2

Problem 1

A. The check bit is given by the equation 2(1) + 3(3) +4(2) + 7(8) +9(9) + 10(z) = 0 (mod 11),
or 24+ 10z =0 (mod 11). We get z = 2.

B. Let the original codeword be u; - - u19, and the transposed numerals be at positions j and &

respectively, j # k. That is, u; = u; for all i # j, k, u; = ug, and uj = u;. By definition we
have, }".iu; =0 (mod 11).
Assume that the transposition is not detected. Then, >, 4u; =0 (mod 11). Thus,), iu; =
> ;) (mod 11), or, ju; + kug = jug + ku; (mod 11). This implies, (j — k)u; = (5 — k)ux
mod 11. But, j — k& # 0 (mod 11). Thus, we must have u; = u; (mod 11), or, u; = uy
because both the numbers are less than 11. Thus the two numbers are the same and no
transposition took place!

C. The missing bit is given by the equation 2(1) 4+ 3(3) +4(2) 4+ 5(8) +6(z) + 7(7) +8(9) +9(6) +
10(10) = 0 (mod 11), or, 44+ 6z =0 (mod 11). We get z = 3.

Problem 2

Here is one version of G.

1 0000011711111 111111110000O0O0O0O0O0°TGO0
0100001111111 10000000111111100
0o0o601000111100001111000111100©0T171
000100110011 001100110110011011
oo00010101010101010101101010110
oo00001171171711111111111111111111

Any 3 rows or combinations would do.

Problem 3

We divide the message into sequences of length 16 bits each. Let these sequences be 515953 ---.
Then, we encode 51555y --- using the RS(255,223) encoder. Likewise we encode S2S4S10-- -,
5357511 -+, and SyS8S12--- using the RS(255,223) encoder. Clearly the rate is preserved. Fur-
thermore, note that, any consecutive bit errors containing up to 64 bits are divide over the four
sequences, such that each sequence contains at most 16 of them consecutively. Thus this code can
correct up to 64 consecutive bit errors.

_ = Ok OO

== OO

Problem 4

A. No, for GF(p")[z], — « is only a factor of 2" — 1 if @™ = 1. This is always true if n = p" — 1,
as assumed in class, but not necessarily for other n.

B. z!% — 1 has 5 distinct factors. This gives us 2° = 32 possible products of the factors. Ignoring
the two trivial generators, 1 and z'® — 1, this gives us 30 distinct codes. (We also accepted
the answer 32).

C. First note that in GF(2), 1 and —1 are the same. We have (" — 1) = (z + 1)(2% + 2% + 2* +
3 +x2+zt+12),50 g= (2% + 25 +2* + 23+ 22 + 2! + 1), and k = 1. This gives two possible
messages, 0 and 1, and two codewords 1111111 and 0000000. This code just repeats be bits
n times and I guess it is usefull if you want redundancy for for a single bit.

D. Code C is generated by the polynomial g;(z). Thus it is also generated by any polynomial
that is a divisor of g1 (z). In order to generate C; U Co, we need to use a polynomial that is a
divisor of both g; and go. The smallest such code (in terms of number of codewords) is given
by the greatest common divisor of g; and go.

Likewise, C; N Cs is generated by the least common multiple of g1 and go.

E. To help distinguish between the polynomials of GF(22) and the polynomials used by the code,
I’ll use y for the first. We have a =y = 2,02 =y +1 = 3,a® = 1 = 1, where the boldface
numbers are the names we give the elements of GF(22). g = (z—a)(z—a?) = (z+0a)(z+a?) =
2?2+ (a+a?) +a® = 22 + z + 1. In general for a message m, ma*mod(z? + x + 1) is going to
give mx +m, so the whole message will be mmm. Therefore the valid codewords are 000000,
010101, 101010 and 111111.

