
Algorithms in the Real World (15-853) Solutions for Assignment # 1

Problem 1

It can cause 65 bit errors. 64 will be in the current block, and 1 bit in the next block. This is actually
one of the main original motivations for CBC mode—i.e. that a single error in transmission does
not propagate to too many errors in the output. Therefore, if an error correcting code is wrapped
around the outside, it would still have a chance of correcting the error (although it would have to
handle the full block error and the additional bit).

Problem 2

A. Let n =
∏i=l

i=1 pki

i , where p1, . . . , pl are the prime factors of n. Then, by definition, we have

φ(n) =
∏i=l

i=1 pki−1
i (pi − 1).

Now, if n has an odd prime factor, then corresponding to that factor pi, the term pi − 1 in
the above product is even, and consequently, φ(n) is even. Similarly, if n is a power of 2, with
the corresponding ki > 1, then the term 2ki−1 is even, so φ(n) is even.

Thus the only number n for which φ(n) is odd is 2. The value of φ(n) in this case is 1. (n = 1
is also a valid answer, because φ(n) can be defined to be 1.)

B. Let d =
∏i=l

i=1 pki

i . Then, m =
∏i=l′

i=1 p
k′

i

i with k′

i ≥ ki ,∀i ≤ l. Now we have φ(d) =
∏i=l

i=1 pki−1
i (pi − 1), and φ(m) =

∏i=l′

i=1 p
k′

i
−1

i (pi − 1). Then, φ(m)/φ(d) =
∏i=l

i=1 p
k′

i
−ki

i ×
∏i=l′

i=l+1 pki−1
i (pi − 1), which is an integer. Thus φ(d)|φ(m).

C. Let g be a generator for the group Z∗

17. Recall that the group is cyclic. Then, consider the
mapping f(ga) = a. Clearly, f maps elements of Z∗

17 to integers between 0 and 16, that
is, elements of the additive group Z16. The mapping is one-to-one and onto, because g is a
generator and the group is cyclic; the reverse map is given by f−1(a) = ga.

Let ∗ be the group operation for Z∗

17. Now, for two elements ga and gb, we have ga ∗ gb =
ga+b mod φ(17) by definition. But, φ(17) = 16. So, ga ∗ gb = ga+b mod 16. Thus we have
f(ga ∗ gb) = f(a + b). This proves that the two groups Z∗

17 and Z16 are isomorphic.

Problem 3

The protocol is given as follows: Alice flips a fair coin and obtains outcome xA. She uses a bit
commitment scheme to commit to the bit xA and sends the certificate to Bob. Bob then flips a
fair coin and obtains outcome xB . He sends this to Alice. Alice then reveals her bit xA and proves
that this is indeed the bit that she had commited to. Both then compute the result x = xA ⊕ xB.

Note that if both parties are honest, then since xA and xB are uniform random bits, their xor
is also a uniform random bit, and the protocol succeeds.

Suppose Alice is dishonest while Bob is honest. Assuming that the bit commitment protocol
works, Alice cannot influence the outcome after seeing Bob’s bit, because she is already committed
to xA. Thus xA is independent of xB. Even if xA is not a fair coin flip (e.g. say it is always 1), the
probability that x is 1 is still 0.5, because xB is a fair coin flip.
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Similarly, if Bob is dishonest, while Alice is honest, then xB is independent of xA, because after
the first step, Bob has no idea about Alice’s bit. Thus as before, x is 1 with probability 0.5, and
the protocol succeeds.

Problem 4

A. The protocol proceeds in three stages. Alice, Bob and Carol first pick random elements a, b
and c. Then, Alice sends ga mod n to Bob, Bob sends gb mod n to Carol, and Carol sends
gc mod n to Alice. In the next round, Alice sends gca mod n to Bob, Bob sends gab mod n
to Carol, and Carol sends gbc mod n to Alice. Finally, the three players compute gabc mod n
and use that as the common secret. This scheme is as secure as the Diffie Hellman scheme
for two parties.

B. Both the parties digitally sign their message. In other words, Alice sends (ga, ErA
(ga)) to

Bob, where rA is Alice’s private key. Bob sends (gb, ErB
(gb)) to Alice, where rB is his private

key. The two parties can verify the sender of the respective messages and thus Mallory cannot
impersonate either of them.

Problem 5

A. Knowing e1 and e2, Eve first computes r and s such that re1 + se2 = 1. She can do this by
using Euclid’s algorithm. Then she computes mr

1 × ms
2 = mre1 × mse2 mod n = m.

B. We can assume that NA, NB and NC are coprime, otherwise Eve can factor them and obtain
the message m. Now we have mA = m3 mod NA, mB = m3 mod NB , and mC = m3

mod NC . Applying the chinese remainder theorem, Eve can compute m3 mod NANBNC ,
because NA, NB and NC are pairwise coprime. Now, m < min(NA, NB , NC). So, m3 <
NANBNC , and m3 mod NANBNC is simply m3. Eve simply takes the cube root of this
number and obtains the message m.

Problem 6

For each pair (y, z), Bob can compute the message m = z
y11 mod (x3 + 2x + 1). This can be done

by writing a simple program that computes the inverse of y modulo x3 +2x+1, and then computes
the product z × (y−1)11 mod (x3 + 2x + 1).

The question, however, provides us a “trapdoor” that greatly simplifies the calculation, and
enables us to find the solution by hand. Recall that x is a generator of the group. For any
polynomial y in the group, we can easily compute a such that xa = y mod (x3 + 2x + 1). The
respective values are displayed in the table on the next page. Now, for each pair (y, z), we first
read off the corresponding a1 and a2 from the table. Then, the decoded message is simply zy−11 =
xa2−11a1 mod 26. We compute a2 − 11a1 mod 26 and read off the corresponding letter from the
table below. This gives us the message: GALOISFIELD.

Problem 7

Not written up yet.
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A 1 26
B 2 13
C x 1
D 1 + x 18
E 2 + x 11
F 2x 14
G 1 + 2x 24
H 2 + 2x 5
I x2 2

J 1 + x2 7
K 2 + x2 3
L x + x2 19
M 1 + x + x2 22
N 2 + x + x2 8
O 2x + x2 12
P 1 + 2x + x2 10
Q 2 + 2x + x2 4
R 2x2 15

S 1 + 2x2 16
T 2 + 2x2 20
U x + 2x2 25
V 1 + x + 2x2 17
W 2 + x + 2x2 23
X 2x + 2x2 6
Y 1 + 2x + 2x2 21
Z 2 + 2x + 2x2 9

Figure 1: Polynomials and their corresponding logs to base x modulo x3 + 2x + 1.
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