
Some Sequential Algorithms
are Almost Always Parallel

Guy Blelloch

Carnegie Mellon University

July 2017

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 1 / 35

Some Sequential Algorithms

?

are Almost Always

?

Parallel

?

Joint work with Jeremy Fineman, Phil Gibbons, Yan Gu, Julian
Shun, and Yihan Sun [BFS SPAA’12], [BFGS PPOPP’12],
[SGuBFG SODA’15], [BGuSSu SPAA’16].

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 2 / 35

Some Sequential Algorithms

?

are Almost Always

?

Parallel

?

Joint work with Jeremy Fineman, Phil Gibbons, Yan Gu, Julian
Shun, and Yihan Sun [BFS SPAA’12], [BFGS PPOPP’12],
[SGuBFG SODA’15], [BGuSSu SPAA’16].

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 2 / 35

Iterative Sequential Algorithms

for i = 1 to n

do something

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 3 / 35

Iterative Sequential Algorithms

for i = 1 to n

a[i] = f(a[i-1])

Fully Sequential (for arbitrary f)
Each iteration depends on all previous iterations.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 4 / 35

Iterative Sequential Algorithms

for i = 1 to n

a[i] = f(a[i-1])

Fully Sequential (for arbitrary f)
Each iteration depends on all previous iterations.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 4 / 35

Iterative Sequential Algorithms

for i = 1 to n

a[i] = a[i] + 1

Fully “parallel”
No dependences among iterations.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 5 / 35

Iterative Sequential Algorithms

for i = 1 to n

a[i] = a[i] + 1

Fully “parallel”
No dependences among iterations.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 5 / 35

Iterative Sequential Algorithms

for i =
√
n + 1 to n

a[i] = f(a[i-
√
n])

2 3 4 5 6 7 8i = 1 9

i → j means j depends on i

Partially parallel.
Some dependences, but they are not affected by the data.
In this case dependence depth is

√
n.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 6 / 35

Iterative Sequential Algorithms

for i =
√
n + 1 to n

a[i] = f(a[i-
√
n])

2 3 4 5 6 7 8i = 1 9

i → j means j depends on i

Partially parallel.
Some dependences, but they are not affected by the data.
In this case dependence depth is

√
n.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 6 / 35

Iterative Sequential Algorithms

for i =
√
n + 1 to n

a[i] = f(a[i-
√
n])

2 3 4 5 6 7 8i = 1 9

i → j means j depends on i

Partially parallel.
Some dependences, but they are not affected by the data.
In this case dependence depth is

√
n.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 6 / 35

Iterative Sequential Algorithms

?

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

0 1 2 3 4 5 6 7i =

a b c d e f g hA[i]
H[i] = 13213100

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

0 1 2 3 4 5 6 7i =

a b c d e f g hA[i]
H[i] = 13213100

b h

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

0 1 2 3 4 5 6 7i =

a b c d e f g hA[i]
H[i] = 13213100

b hh b

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

0 1 2 3 4 5 6 7i =

a b c d e f g hA[i]
H[i] = 13213100

h bh bgd

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

0 1 2 3 4 5 6 7i =

a b c d e f g hA[i]
H[i] = 13213100

h bgdg d

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Dependences?

0 1 2 3 4 5 6 7i =

0 0 1 2 3 4 5 6H[i] =

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Fully sequential

0 1 2 3 4 5 6 7i =

0 0 1 2 3 4 5 6H[i] =

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Dependences?

7i =

0 1 2 3 4 5 6 7H[i] =
6543210

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Fully parallel

7i =

0 1 2 3 4 5 6 7H[i] =
6543210

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

In general?

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

In general?

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] = 1

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

In general?

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] = 111

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Dependences depend on data.

Question: What can we say about dependence depth over the
random choices?

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Dependences depend on data.

Question: What can we say about dependence depth over the
random choices?

Answer [SGuBFG’15]: O(log n) w.h.p.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 7 / 35

Iterative Sequential Algorithms

?

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

7

4

6

8

3

unknown

in

out

1

5

2

4 5

12

63

7

8

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Dependences for this simple cycle graph?

1

2
3

4

5

6
7

8

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Fully sequential

1

2
3

4

5

6
7

8

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Same graph, different ordering of V . Dependences now?

1

3
2

4

6

5
8

7

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Parallel?

1

3
2

4

6

5
8

7

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Parallel?

1

3
2

4

6

5
8

7

unknown

in

out

1

2

5

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Fully parallel order (two rounds)

1

3
2

4

6

5
8

7

unknown

in

out

1

2

5

3 4

8
7

6

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Partially parallel order

7

4

6

8

3

unknown

in

out

1

5

2

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Partially parallel order

7

4

6

8

3

unknown

in

out

1

5

2

5

12

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Partially parallel order

7

4

6

8

3

unknown

in

out

1

5

2

5

12

63

7

8

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Partially parallel order

7

4

6

8

3

unknown

in

out

1

5

2

4 5

12

63

7

8

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Question: what is the dependence depth for a random order of
the vertices?

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Question: what is the dependence depth for a random order of
the vertices?

Answer [BFS’12]: O(log2 n)
(w.h.p. for random ordering of V , i.e. if we randomly permute V)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Question: what is the dependence depth for a random order of
the vertices?

Answer [BFS’12]: O(log2 n)
(w.h.p. for random ordering of V , i.e. if we randomly permute V)
Open problem: O(log n) w.h.p.?

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 8 / 35

Dependence Depth

for i = 1 to n

do something

Simple model:

Each iterate is a vertex

i → j means j depends on i

Iterations

1 2

3 6

4 5

7

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 9 / 35

Dependence Depth

for i = 1 to n

do something

Simple model:

Each iterate is a vertex

i → j means j depends on i

Iteration Depth:
the longest chain of dependences.

Iterations

1 2

3 6

4 5

7

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 9 / 35

Dependence Depth

for i = 1 to n

do something

Simple model:

Each iterate is a vertex

i → j means j depends on i

Iteration Depth:
the longest chain of dependences.

Overall Depth:
weighted by depth of each iteration.

Iterations

1 2

3 6

4 5

7

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 9 / 35

Dependence Depth

Nested iterations

1 2 3 4 5

Sequential loops
within iterations

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 10 / 35

Dependence Depth

Nested iterations

1 2 3 4 5

Parallel loops
within iteration

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 10 / 35

Only Two Examples?

1 Knuth shuffle

2 Greedy MIS

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 11 / 35

More Iterative Sequential Algorithms

Greedy Maximal Matching

Graph G = (V ,E) and

A[1, . . . , |V |] = true // A[i] if vertex i is available
M[1, . . . , |E |] = false // M[j] if edge j is in matching
for i = 1 to |E |

(u, v) = E [i]
if (A[u] and A[v])
then M[i] = true, A[u] = false, A[v] = false

Iteration Depth [BFS’12]: O(log2 |V |)
(w.h.p. for random ordering of E)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 12 / 35

More Iterative Sequential Algorithms

List contraction

A = an array containing n links of doubly linked lists
for i = 0 to n − 1

A[i].next.previous = A[i].previous
A[i].previous.next = A[i].next

2 3 4 5 6 7 8i = 1

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 13 / 35

More Iterative Sequential Algorithms

List contraction

A = an array containing n links of doubly linked lists
for i = 0 to n − 1

A[i].next.previous = A[i].previous
A[i].previous.next = A[i].next

2 3 4 5 6 7 8i =

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 13 / 35

More Iterative Sequential Algorithms

List contraction

A = an array containing n links of doubly linked lists
for i = 0 to n − 1

A[i].next.previous = A[i].previous
A[i].previous.next = A[i].next

Applications of:

length of lists or list ranking

size or number of cycles in a permutation

Euler tour, biconnectivity,..

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 13 / 35

More Iterative Sequential Algorithms

List contraction

A = an array containing n links of doubly linked lists
for i = 0 to n − 1

A[i].next.previous = A[i].previous
A[i].previous.next = A[i].next

Iteration Depth [SGuBFG’15]: O(log n)
(w.h.p. for random ordering of A)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 13 / 35

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

A = an array of keys

T = empty binary tree

for i = 1 to n
BST_insert(T ,A[i])

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of A)

Overall Depth: O(log n)

Analysis requires
sub-iteration
dependences, otherwise
O(log2 n).

1 2 3 4 5

Sequential loops
within iterations

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 14 / 35

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

A = an array of keys

T = empty binary tree

for i = 1 to n
BST_insert(T ,A[i])

Example:

7

4 9

1 5

insert(2), insert(8) – no dependence

insert(2), insert(3) – dependence

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of A)

Overall Depth: O(log n)

Analysis requires
sub-iteration
dependences, otherwise
O(log2 n).

1 2 3 4 5

Sequential loops
within iterations

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 14 / 35

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

A = an array of keys

T = empty binary tree

for i = 1 to n
BST_insert(T ,A[i])

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of A)

Overall Depth: O(log n)

Analysis requires
sub-iteration
dependences, otherwise
O(log2 n).

1 2 3 4 5

Sequential loops
within iterations

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 14 / 35

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

A = an array of keys

T = empty binary tree

for i = 1 to n
BST_insert(T ,A[i])

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of A)

Overall Depth: O(log n)

Analysis requires
sub-iteration
dependences, otherwise
O(log2 n).

1 2 3 4 5

Sequential loops
within iterations

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 14 / 35

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

A = an array of keys

T = empty binary tree

for i = 1 to n
BST_insert(T ,A[i])

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of A)

Overall Depth: O(log n)

Analysis requires
sub-iteration
dependences, otherwise
O(log2 n).

1 2 3 4 5

Sequential loops
within iterations

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 14 / 35

More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C)

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 15 / 35

More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Example:

32 15 4

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C)

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 15 / 35

More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Example:

32 15 4

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C)

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 15 / 35

More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Example:

32 15 4

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C)

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 15 / 35

More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C)

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 15 / 35

More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C)

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 15 / 35

More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C)

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 15 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Example:

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Example:

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Example:

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Example:

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Example:

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Example:

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Total Work: O(n log n) (w.h.p. for random ordering of P)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of P)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of P)

Analysis requires allowing subiterations to proceed independently.

1 2 3 4 5

Parallel loops
within iteration

Iterations

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T)
replace t with new triangle(s) in T

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of P)

Parallel incremental Delaunay is widely used in practice, but it
was not previously known whether it is theoretically efficient.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35

More Iterative Sequential Algorithms

Graph Connectivity using union-find

graph G = (V ,E)
F = a union find data structure on V
for i = 1 to |E |

u = F.find(E [i].u)
v = F.find(E [i].v)
if (u 6= v) then F.union(u, v)

Iteration Depth: TDB (open problem)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 17 / 35

More Iterative Sequential Algorithms

Graph Connectivity using union-find

graph G = (V ,E)
F = a union find data structure on V
for i = 1 to |E |

u = F.find(E [i].u)
v = F.find(E [i].v)
if (u 6= v) then F.union(u, v)

Iteration Depth: TDB (open problem)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 17 / 35

Some Sequential Algorithms

are Almost Always

Parallel

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 18 / 35

��
��XXXXSome Many Sequential Algorithms

Iterative sequential algorithms such as:
Knuth shuffle, greedy MIS, greedy maximal matching,
list contraction, tree contraction, linear programming,
Delaunay triangulation

are Almost Always

Parallel

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 18 / 35

��
��XXXXSome Many Sequential Algorithms

Iterative sequential algorithms such as:
Knuth shuffle, greedy MIS, greedy maximal matching,
list contraction, tree contraction, linear programming,
Delaunay triangulation

are Almost Always

For almost all input orders (i.e. whp over random order)
Or for almost all random choices (Knuth shuffle)

Parallel

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 18 / 35

��
��XXXXSome Many Sequential Algorithms

Iterative sequential algorithms such as:
Knuth shuffle, greedy MIS, greedy maximal matching,
list contraction, tree contraction, linear programming,
Delaunay triangulation

are Almost Always

For almost all input orders (i.e. whp over random order)
Or for almost all random choices (Knuth shuffle)

Parallel
Polylogarithmic dependence depth

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 18 / 35

Why care?

Intellectual curiosity

Lots of work on parallel algorithms, but perhaps sequential
ones are already parallel

Application to parallel and distributed algorithms (Theory)

Surprisingly simple solutions to basic problems

Possible way to attack new problems

Theoretical justification to current practice

Application to parallel and distributed algorithms (Practice)

Fast and simple code

Generic techniques to parallelize code

Determinacy

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 19 / 35

Why care?

Intellectual curiosity

Lots of work on parallel algorithms, but perhaps sequential
ones are already parallel

Application to parallel and distributed algorithms (Theory)

Surprisingly simple solutions to basic problems

Possible way to attack new problems

Theoretical justification to current practice

Application to parallel and distributed algorithms (Practice)

Fast and simple code

Generic techniques to parallelize code

Determinacy

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 19 / 35

Why care?

Intellectual curiosity

Lots of work on parallel algorithms, but perhaps sequential
ones are already parallel

Application to parallel and distributed algorithms (Theory)

Surprisingly simple solutions to basic problems

Possible way to attack new problems

Theoretical justification to current practice

Application to parallel and distributed algorithms (Practice)

Fast and simple code

Generic techniques to parallelize code

Determinacy

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 19 / 35

Why care?

Intellectual curiosity

Lots of work on parallel algorithms, but perhaps sequential
ones are already parallel

Application to parallel and distributed algorithms (Theory)

Surprisingly simple solutions to basic problems

Possible way to attack new problems

Theoretical justification to current practice

Application to parallel and distributed algorithms (Practice)

Fast and simple code

Generic techniques to parallelize code

Determinacy

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 19 / 35

How to Analyze Dependence Depth

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 20 / 35

Knuth Shuffle: Iteration Depth

for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 21 / 35

Knuth Shuffle: Iteration Depth

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =

0

1

72 4

5

3

6

Chosen locations

0 3

1

72 4

5

6

Actual dependences

0
31

7

2

45

6

Rearranged

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 22 / 35

Knuth Shuffle: Iteration Depth

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =

0

1

72 4

5

3

6

Chosen locations

0 3

1

72 4

5

6

Actual dependences

0
31

7

2

45

6

Rearranged

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 22 / 35

Knuth Shuffle: Iteration Depth

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =

0

1

72 4

5

3

6

Chosen locations

0 3

1

72 4

5

6

Actual dependences

0
31

7

2

45

6

Rearranged

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 22 / 35

Knuth Shuffle: Iteration Depth

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =

0

1

72 4

5

3

6

Chosen locations

0 3

1

72 4

5

6

Actual dependences

0
31

7

2

45

6

Rearranged

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 22 / 35

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =
8
?

0
31

7

2

45

6

Not including 8

0
31

7

2

45

6

8
8

8 8
8

8

8 8

8

5 2 4
7 1

6 3

8
0

Possible positions of 8

All equally likely, so equivalent to random BST.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 23 / 35

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =
8
?

0
31

7

2

45

6

Not including 8

0
31

7

2

45

6

8
8

8 8
8

8

8 8

8

5 2 4
7 1

6 3

8
0

Possible positions of 8

All equally likely, so equivalent to random BST.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 23 / 35

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =
8
?

0
31

7

2

45

6

Not including 8

0
31

7

2

45

6

8
8

8 8
8

8

8 8

8

5 2 4
7 1

6 3

8
0

Possible positions of 8

All equally likely, so equivalent to random BST.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 23 / 35

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =
8
?

0
31

7

2

45

6

Not including 8

0
31

7

2

45

6

8
8

8 8
8

8

8 8

8

5 2 4
7 1

6 3

8
0

Possible positions of 8

All equally likely, so equivalent to random BST.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 23 / 35

Maximal Independent Set, Bound on Depth

graph G = (V ,E), S [1, . . . , n] = unknown, n = |V |
for i = 1 to n

if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on
step i . The probability of selecting one of the neighbors on each
step j (≤ i) is at least d/n. The probability it survives all steps j is
therefore at most (1− d/n)i , leading to the result.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 24 / 35

Maximal Independent Set, Bound on Depth

graph G = (V ,E), S [1, . . . , n] = unknown, n = |V |
for i = 1 to n

if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Known results

Lexicographically first MIS is P-complete [Cook ’85]

O(log2 n) dependence depth for random graphs w.h.p.
[Coppersmith, Raghavan, Tompa ’89]

O(log n) depth for random graphs w.h.p. [Calkin, Frieze ’90]

O(log2 n) depth for arbitrary graph in random order

Many parallel algorithms (e.g. Luby).

Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on
step i . The probability of selecting one of the neighbors on each
step j (≤ i) is at least d/n. The probability it survives all steps j is
therefore at most (1− d/n)i , leading to the result.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 24 / 35

Maximal Independent Set, Bound on Depth

graph G = (V ,E), S [1, . . . , n] = unknown, n = |V |
for i = 1 to n

if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Definition (Residual graph on step i)

The graph that is left after step i

7

4

6

8

3

1

5

2

4

63

5

2

4

6

5

After iteration 1 After iteration 2

Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on
step i . The probability of selecting one of the neighbors on each
step j (≤ i) is at least d/n. The probability it survives all steps j is
therefore at most (1− d/n)i , leading to the result.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 24 / 35

Maximal Independent Set, Bound on Depth

graph G = (V ,E), S [1, . . . , n] = unknown, n = |V |
for i = 1 to n

if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on
step i . The probability of selecting one of the neighbors on each
step j (≤ i) is at least d/n. The probability it survives all steps j is
therefore at most (1− d/n)i , leading to the result.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 24 / 35

Maximal Independent Set, Bound on Depth

graph G = (V ,E), S [1, . . . , n] = unknown, n = |V |
for i = 1 to n

if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V).

For example:

For i = n/2 (half done), the max degree is O(log n) w.h.p.

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on
step i . The probability of selecting one of the neighbors on each
step j (≤ i) is at least d/n. The probability it survives all steps j is
therefore at most (1− d/n)i , leading to the result.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 24 / 35

Maximal Independent Set, Bound on Depth

graph G = (V ,E), S [1, . . . , n] = unknown, n = |V |
for i = 1 to n

if for any earlier neighbor vj of vi, S [j] = in

then S [i] = out else S [i] = in

Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on
step i . The probability of selecting one of the neighbors on each
step j (≤ i) is at least d/n. The probability it survives all steps j is
therefore at most (1− d/n)i , leading to the result.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 24 / 35

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 25 / 35

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…

O(log n) O(log n) O(log n)

w.h.p. no path within a block is greater than O(log n)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 25 / 35

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…

O(log n) O(log n) O(log n)

Proof outline: For each block i

Prob. of edge beween two iterations is at most 1
2i

(by Degree Lemma)

number of paths of length l is
(2i logn

l

)
By the union bound the prob. of any path of length l is at most(

1

2i

)l (
2i logn

l

)
<

(
1

2i

)l (
e2i log n

l

)l

=

(
e log n

l

)l

Therefore probability is very small that l > 2e log n.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 25 / 35

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…

O(log n) O(log n) O(log n)

Summary

Since path within each block is O(log n), and number of blocks is
O(log n), total depth is O(log2 n).

Can be improved to O(log n log dmax) by picking blocks of size
2i dmax

n log n.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 25 / 35

Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of “rounds” each iteration can check if it has
any unresolved dependences.

Sufficient condition (true for all our examples):

1 Each i independently can identify active locations li , s.t.,

2 pending iterations in every prefix 0, . . . , i only update ∪j∈[i]lj .

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 26 / 35

Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of “rounds” each iteration can check if it has
any unresolved dependences.

Sufficient condition (true for all our examples):

1 Each i independently can identify active locations li , s.t.,

2 pending iterations in every prefix 0, . . . , i only update ∪j∈[i]lj .

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 26 / 35

Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of “rounds” each iteration can check if it has
any unresolved dependences.

Sufficient condition (true for all our examples):

1 Each i independently can identify active locations li , s.t.,

2 pending iterations in every prefix 0, . . . , i only update ∪j∈[i]lj .

0 1 2 3 4 5 6 7iteration 8
7
3

1 3
1
5

2 1
7

{1,3,5,7}
finished
pending

active
locations

for prefix 0,…,5

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 26 / 35

Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of “rounds” each iteration can check if it has
any unresolved dependences.

Sufficient condition (true for all our examples):

1 Each i independently can identify active locations li , s.t.,

2 pending iterations in every prefix 0, . . . , i only update ∪j∈[i]lj .

Suggests an implementation strategy:

While there are pending iterations:

reserve: in parallel pending iterations find active locations and
mark them

commit: in parallel each pending iteration runs, but aborts if it
depends on an active previous location

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 26 / 35

Implication For Algorithms

Parallel (Priority PRAM)

Work Depth (Time)

MIS O(|E |) O(log2 |V | log ∆)
Maximal Matching O(|E |) O(log2 |V | log ∆)
BST Sort O(n log n) O(log n)
Knuth Shuffle O(n) O(log n log∗ n)
List Contraction O(n) O(log n log∗ n)
2d Linear Programming O(n) O(log n)
Delaunay triangulation O(n log n) O(log2 n)

All are work efficient. ∆ = maximum degree

Distributed (Congest model)

Rounds

MIS O(log |V | log ∆)
Maximal Matching O(log |V | log ∆)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 27 / 35

Implication For Algorithms

Parallel (Priority PRAM)

Work Depth (Time)

MIS O(|E |) O(log2 |V | log ∆)
Maximal Matching O(|E |) O(log2 |V | log ∆)
BST Sort O(n log n) O(log n)
Knuth Shuffle O(n) O(log n log∗ n)
List Contraction O(n) O(log n log∗ n)
2d Linear Programming O(n) O(log n)
Delaunay triangulation O(n log n) O(log2 n)

All are work efficient. ∆ = maximum degree

Distributed (Congest model)

Rounds

MIS O(log |V | log ∆)
Maximal Matching O(log |V | log ∆)

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 27 / 35

Implementation: Speculative For

struct step {

bool reserve(int i) {

reserves locations that will be written by iteration i}

bool commit(int i) {

checks locations iteration i depends on, and runs if safe}};

speculative_for(Step(..), 0, n); // 0, . . . , n = range of iterations

speculative for will repeat the following until done:

picks a prefix of remaining (pending) iterations

in parallel runs the reserve on the prefix

in parallel runs the commit on the prefix

removes completed iterations (commit returns 1)

Can dynamically choose size of prefix.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 28 / 35

Implementation: Speculative For

struct step {

bool reserve(int i) {

reserves locations that will be written by iteration i}

bool commit(int i) {

checks locations iteration i depends on, and runs if safe}};

speculative_for(Step(..), 0, n); // 0, . . . , n = range of iterations

speculative for will repeat the following until done:

picks a prefix of remaining (pending) iterations

in parallel runs the reserve on the prefix

in parallel runs the commit on the prefix

removes completed iterations (commit returns 1)

Can dynamically choose size of prefix.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 28 / 35

Implementation: Speculative For

struct step {

bool reserve(int i) {

reserves locations that will be written by iteration i}

bool commit(int i) {

checks locations iteration i depends on, and runs if safe}};

speculative_for(Step(..), 0, n); // 0, . . . , n = range of iterations

speculative for will repeat the following until done:

picks a prefix of remaining (pending) iterations

in parallel runs the reserve on the prefix

in parallel runs the commit on the prefix

removes completed iterations (commit returns 1)

Can dynamically choose size of prefix.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 28 / 35

Implementation: Speculative For

struct step {

bool reserve(int i) {

reserves locations that will be written by iteration i}

bool commit(int i) {

checks locations iteration i depends on, and runs if safe}};

speculative_for(Step(..), 0, n); // 0, . . . , n = range of iterations

speculative for will repeat the following until done:

picks a prefix of remaining (pending) iterations

in parallel runs the reserve on the prefix

in parallel runs the commit on the prefix

removes completed iterations (commit returns 1)

Can dynamically choose size of prefix.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 28 / 35

Knuth Shuffle Code

struct knuth_step {

bool reserve(int i) {

write_min(R[i], i); write_min(R[H[i]], i);

return 1; }

bool commit (int i) {

int h = H[i];

if(R[H[i]] == i) {

if(R[i] == i) {swap(A[i],A[H[i]]); R[i] = inf; return 1;}

R[H[i]] = inf;}

return 0; }

};

speculative_for(knuth_step(..), 0, n);

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 29 / 35

MIS Code

struct mis_step {

bool reserve(int i) {

flag = In;

for (int j = 0; j < G[i].degree; j++) {

int ngh = G[i].Neighbors[j];

if (ngh < i) {

if (S[ngh] == In) { flag = Out; return 1;}

else if (S[ngh] == Unknown) flag = Unknown; }}

return 1;}

bool commit(int i) { return (S[i] = flag) != Unknown;}

};

speculative_for(mis_step(..), 0, n);

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 30 / 35

Spanning Tree Code

struct union_find_step {

bool reserve(int i) {

u = UF.find(E[i].u);

v = UF.find(E[i].v);

if (u > v) swap(u,v);

if (u != v) { write_min(R[v], i); return 1;

} else return 0; }

bool commit(int i) {

if (R[v] == i) { UF.link(v, u); return 1; }

else return 0; }

};

speculative_for(union_find_step(..), 0, m);

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 31 / 35

Timings on a 64-core Xeon Phi

tseq = best sequential algorithm
t1 = time on one core
t64 = time on all cores

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 32 / 35

Timings on a 64-core Xeon Phi

tseq = best sequential algorithm
t1 = time on one core
t64 = time on all cores

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 32 / 35

End Matter

Conclusions

1 Many sequential algorithms are “inherently” parallel, at least
when randomly ordering.

Perhaps should be thinking of algorithms more abstractly in
terms of their dependence graph instead of specific model.

2 Can often take advantage of the parallelism using reservations

3 Resulting code is simple, fast, and deterministic

Open Questions

1 Depth of MIS

2 Resolving dependences in a more general context.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 33 / 35

End Matter

Conclusions

1 Many sequential algorithms are “inherently” parallel, at least
when randomly ordering.

Perhaps should be thinking of algorithms more abstractly in
terms of their dependence graph instead of specific model.

2 Can often take advantage of the parallelism using reservations

3 Resulting code is simple, fast, and deterministic

Open Questions

1 Depth of MIS

2 Resolving dependences in a more general context.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 33 / 35

