Some Sequential Algorithms are Almost Always Parallel

Guy Blelloch
Carnegie Mellon University
July 2017

Some Sequential Algorithms

?

are Almost Always

?
Parallel
?

Some Sequential Algorithms

?

are Almost Always

?

Parallel

?

Joint work with Jeremy Fineman, Phil Gibbons, Yan Gu, Julian Shun, and Yihan Sun [BFS SPAA'12], [BFGS PPOPP'12], [SGuBFG SODA'15], [BGuSSu SPAA'16].

Iterative Sequential Algorithms

for $\mathrm{i}=1$ to n
do something

Iterative Sequential Algorithms

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \\
& \quad a[i]=f(a[i-1])
\end{aligned}
$$

Iterative Sequential Algorithms

```
for i = 1 to n
    a[i] = f(a[i-1])
```

Fully Sequential (for arbitrary f)
Each iteration depends on all previous iterations.

Iterative Sequential Algorithms

```
for i = 1 to n
    a[i] = a[i] + 1
```


Iterative Sequential Algorithms

```
for i = 1 to n
    a[i] = a[i] + 1
```


Fully "parallel"

No dependences among iterations.

Iterative Sequential Algorithms

$$
\begin{aligned}
& \text { for } i=\sqrt{n}+1 \text { to } n \\
& \quad a[i]=f(a[i-\sqrt{n}])
\end{aligned}
$$

Iterative Sequential Algorithms

$$
\begin{aligned}
& \text { for } i=\sqrt{n}+1 \text { to } n \\
& \quad a[i]=f(a[i-\sqrt{n}])
\end{aligned}
$$

$i \rightarrow j$ means j depends on i

Iterative Sequential Algorithms

$$
\begin{aligned}
& \text { for } i=\sqrt{n}+1 \text { to } n \\
& \quad a[i]=f(a[i-\sqrt{n}])
\end{aligned}
$$

$i \rightarrow j$ means j depends on i

Partially parallel.

Some dependences, but they are not affected by the data.
In this case dependence depth is \sqrt{n}.

Iterative Sequential Algorithms

```
?
A = an input array of length n
for i=n-1 downto 0
    H[i] = rand({0,\ldots,i})
    swap(A[H[i]],A[i])
```


Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A
$A=$ an input array of length n
for $i=n-1$ downto 0
$\mathrm{H}[i]=\operatorname{rand}(\{0, \ldots, i\})$
$\operatorname{swap}(\mathrm{A}[\mathrm{H}[i]], \mathrm{A}[i])$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array} \\
& \text { A[i] } \begin{array}{|l|l|l|l|l|l|l|l|}
\hline a & b & c & d & e & f & g & h \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \text { downto } 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array} \\
& \text { A[i] } \begin{array}{|l|l|l|l|l|l|l|l|}
\hline a & b & c & d & e & f & g & h \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \text { downto } 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array} \\
& \text { A[i] } \begin{array}{|l|l|l|l|l|l|l|l|}
\hline a & h & c & d & e & f & g & b \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array} \\
& \text { A[i] } \begin{array}{|l|l|l|l|l|l|l|l|}
\hline a & h & c & d & e & f & g & b \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

Dependences?

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

Fully sequential

$$
\begin{aligned}
& \mathrm{i}\left.=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}
\end{array} . \begin{array}{ll}
&
\end{array}\right) \\
& \hline
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

Dependences?

$$
\begin{aligned}
& \mathbf{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\text { l }
\end{array} \\
& \hline
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

Fully parallel

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}
\end{array} . \begin{array}{ll}
& \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \text { downto } 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

In general?

$$
\begin{aligned}
& \mathbf{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \text { downto } 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

In general?

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \operatorname{downto} 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

In general?

$$
\begin{aligned}
\mathrm{i} & =\begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array} \\
\mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \text { downto } 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

Dependences depend on data.
Question: What can we say about dependence depth over the random choices?

Iterative Sequential Algorithms

Knuth's shuffle to generate a random permutation of A

$$
\begin{aligned}
& A=\text { an input array of length } n \\
& \text { for } i=n-1 \text { downto } 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

Dependences depend on data.

Question: What can we say about dependence depth over the random choices?

Answer [SGuBFG'15]: $O(\log n)$ w.h.p.

Iterative Sequential Algorithms

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in then $S[i]=$ out else $S[i]=$ in

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Dependences for this simple cycle graph?

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in then $S[i]=$ out else $S[i]=$ in

Fully sequential

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Same graph, different ordering of V. Dependences now?

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Parallel?

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Parallel?

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Fully parallel order (two rounds)

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Partially parallel order

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Partially parallel order

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Partially parallel order

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Partially parallel order

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Question: what is the dependence depth for a random order of the vertices?

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Question: what is the dependence depth for a random order of the vertices?
Answer [BFS'12]: $O\left(\log ^{2} n\right)$
(w.h.p. for random ordering of V, i.e. if we randomly permute V)

Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph $G=(V, E), S[1, \ldots, n]=$ unknown for $i=1$ to $|V|$
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in
then $S[i]=$ out else $S[i]=$ in

Question: what is the dependence depth for a random order of the vertices?
Answer [BFS'12]: $O\left(\log ^{2} n\right)$
(w.h.p. for random ordering of V, i.e. if we randomly permute V) Open problem: $O(\log n)$ w.h.p.?

Dependence Depth

for $\mathrm{i}=1$ to n do something

Simple model：
－Each iterate is a vertex
－$i \rightarrow j$ means j depends on i
Iterations

Dependence Depth

for $\mathrm{i}=1$ to n do something

Simple model：
－Each iterate is a vertex
－$i \rightarrow j$ means j depends on i

Iteration Depth：

the longest chain of dependences．
Iterations

Dependence Depth

for $\mathrm{i}=1$ to n do something

Simple model:

- Each iterate is a vertex
- $i \rightarrow j$ means j depends on i

Iteration Depth:

the longest chain of dependences.
Overall Depth:
weighted by depth of each iteration.

Iterations

Dependence Depth

Nested iterations

Dependence Depth

Nested iterations

Only Two Examples?

(1) Knuth shuffle
(2) Greedy MIS

More Iterative Sequential Algorithms

Greedy Maximal Matching

```
Graph \(G=(V, E)\) and
\(A[1, \ldots,|V|]=\) true \(\quad / / A[i]\) if vertex \(i\) is available
\(M[1, \ldots,|E|]=\) false \(/ / M[j]\) if edge \(j\) is in matching
for \(i=1\) to \(|E|\)
    \((u, v)=E[i]\)
    if \((A[u]\) and \(A[v])\)
    then \(M[i]=\) true, \(A[u]=\) false, \(A[v]=\) false
```

Iteration Depth [BFS'12]: $O\left(\log ^{2}|V|\right)$ (w.h.p. for random ordering of E)

More Iterative Sequential Algorithms

List contraction

$A=$ an array containing n links of doubly linked lists
for $i=0$ to $n-1$
$A[i]$.next.previous $=A[i]$.previous
$A[i]$.previous.next $=A[i]$.next

More Iterative Sequential Algorithms

List contraction

$A=$ an array containing n links of doubly linked lists
for $i=0$ to $n-1$
$A[i]$.next.previous $=A[i]$.previous
$A[i]$.previous.next $=A[i]$.next

More Iterative Sequential Algorithms

List contraction

$A=$ an array containing n links of doubly linked lists
for $i=0$ to $n-1$
$A[i]$.next.previous $=A[i]$.previous
$A[i]$.previous.next $=A[i]$.next

Applications of:

- length of lists or list ranking
- size or number of cycles in a permutation
- Euler tour, biconnectivity,..

More Iterative Sequential Algorithms

List contraction

$A=$ an array containing n links of doubly linked lists
for $i=0$ to $n-1$
$A[i]$.next.previous $=A[i]$.previous
$A[i]$.previous.next $=A[i]$.next

Iteration Depth [SGuBFG'15]: $O(\log n)$
(w.h.p. for random ordering of A)

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

$$
\begin{aligned}
& A=\text { an array of keys } \\
& T=\text { empty binary tree } \\
& \text { for } i=1 \text { to } n \\
& \text { BST_insert }(T, A[i])
\end{aligned}
$$

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

$$
\begin{aligned}
& A=\text { an array of keys } \\
& T=\text { empty binary tree } \\
& \text { for } i=1 \text { to } n \\
& \text { BST_insert }(T, A[i])
\end{aligned}
$$

Example:

insert(2), insert(8) - no dependence insert(2), insert(3) - dependence

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

$$
\begin{aligned}
& A=\text { an array of keys } \\
& T=\text { empty binary tree } \\
& \text { for } i=1 \text { to } n \\
& \text { BST_insert }(T, A[i])
\end{aligned}
$$

Iteration Depth [BGuSSu'16]: $O(\log n)$
(w.h.p. for random ordering of A)

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

$$
\begin{aligned}
& A=\text { an array of keys } \\
& T=\text { empty binary tree } \\
& \text { for } i=1 \text { to } n \\
& \text { BST_insert }(T, A[i])
\end{aligned}
$$

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of A)

Overall Depth: $O(\log n)$

More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

$$
\begin{aligned}
& A=\text { an array of keys } \\
& T=\text { empty binary tree } \\
& \text { for } i=1 \text { to } n \\
& \text { BST_insert }(T, A[i])
\end{aligned}
$$

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of A)

Overall Depth: $O(\log n)$
Analysis requires sub-iteration dependences, otherwise $O\left(\log ^{2} n\right)$.

More Iterative Sequential Algorithms

```
two-dimensional linear programming
    Constraints (lines) \(C=c_{1}, \ldots, c_{n}\)
    \(p=(\infty, 0)\)
    for \(i=1\) to \(n\)
        if \(p\) violates \(c_{i}\)
        \(p=\min\) intersection of \(c_{1}, \ldots, c_{i-1}\) along \(c_{i}\)
```


More Iterative Sequential Algorithms

two-dimensional linear programming
Constraints (lines) $C=c_{1}, \ldots, c_{n}$
$p=(\infty, 0)$
for $i=1$ to n
if p violates c_{i}

$$
p=\min \text { intersection of } c_{1}, \ldots, c_{i-1} \text { along } c_{i}
$$

Example:

More Iterative Sequential Algorithms

two-dimensional linear programming
Constraints (lines) $C=c_{1}, \ldots, c_{n}$
$p=(\infty, 0)$
for $i=1$ to n
if p violates c_{i}

$$
p=\min \text { intersection of } c_{1}, \ldots, c_{i-1} \text { along } c_{i}
$$

Example:

More Iterative Sequential Algorithms

two-dimensional linear programming
Constraints (lines) $C=c_{1}, \ldots, c_{n}$
$p=(\infty, 0)$
for $i=1$ to n
if p violates c_{i}

$$
p=\min \text { intersection of } c_{1}, \ldots, c_{i-1} \text { along } c_{i}
$$

Example:

More Iterative Sequential Algorithms

```
two-dimensional linear programming
    Constraints (lines) \(C=c_{1}, \ldots, c_{n}\)
    \(p=(\infty, 0)\)
    for \(i=1\) to \(n\)
        if \(p\) violates \(c_{i}\)
        \(p=\min\) intersection of \(c_{1}, \ldots, c_{i-1}\) along \(c_{i}\)
```

Total work: $O(n)$ (w.h.p. for random ordering of C)

More Iterative Sequential Algorithms

two-dimensional linear programming
Constraints (lines) $C=c_{1}, \ldots, c_{n}$
$p=(\infty, 0)$
for $i=1$ to n
if p violates c_{i}

$$
p=\min \text { intersection of } c_{1}, \ldots, c_{i-1} \text { along } c_{i}
$$

Total work: $O(n)$ (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu'16]: $O(\log n)$

(w.h.p. for random ordering of C)

More Iterative Sequential Algorithms

two-dimensional linear programming

```
Constraints (lines) \(C=c_{1}, \ldots, c_{n}\)
    \(p=(\infty, 0)\)
    for \(i=1\) to \(n\)
    if \(p\) violates \(c_{i}\)
        \(p=\min\) intersection of \(c_{1}, \ldots, c_{i-1}\) along \(c_{i}\)
```

Total work: $O(n)$ (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu'16]: $O(\log n)$

 (w.h.p. for random ordering of C)Overall Depth: $O(\log (n) \log \log (n))$ $(\log \log (n)$ term for min intersection)

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P \text { \} }
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } t \text { in conflictSet }\left(p_{i}, T\right)
$$

$$
\text { replace } t \text { with new triangle(s) in } T
$$

Example:

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P\}
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } t \text { in conflictSet }\left(p_{i}, T\right)
$$

$$
\text { replace } t \text { with new triangle(s) in } T
$$

Example:

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P\}
\end{aligned}
$$

for $i=1$ to n for t in conflictSet $\left(p_{i}, T\right)$ replace t with new triangle(s) in T

Example:

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P\}
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } t \text { in conflictSet }\left(p_{i}, T\right)
$$

$$
\text { replace } t \text { with new triangle(s) in } T
$$

Example:

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P\}
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } t \text { in conflictSet }\left(p_{i}, T\right)
$$

$$
\text { replace } t \text { with new triangle(s) in } T
$$

Example:

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P\}
\end{aligned}
$$

for $i=1$ to n for t in conflictSet $\left(p_{i}, T\right)$ replace t with new triangle(s) in T

Example:

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P\}
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } t \text { in conflictSet }\left(p_{i}, T\right)
$$

$$
\text { replace } t \text { with new triangle(s) in } T
$$

Total Work: $O(n \log n)$ (w.h.p. for random ordering of P)

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P\}
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } t \text { in conflictSet }\left(p_{i}, T\right)
$$

$$
\text { replace } t \text { with new triangle(s) in } T
$$

Iteration Depth [BGuSSu'16]: $O(\log n)$
(w.h.p. for random ordering of P)

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { \{boundingTriangle of } P \text { \} }
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } t \text { in conflictSet }\left(p_{i}, T\right)
$$

$$
\text { replace } t \text { with new triangle(s) in } T
$$

Iteration Depth [BGuSSu'16]: $O(\log n)$
(w.h.p. for random ordering of P)

Analysis requires allowing subiterations to proceed independently.

More Iterative Sequential Algorithms

Delaunay triangulation

$$
\begin{aligned}
& \text { points } P=p_{1}, \ldots, p_{n} \\
& T=\text { boundingTriangle of } P\} \\
& \text { for } i=1 \text { to } n \\
& \quad \text { for } t \text { in conflictSet }\left(p_{i}, T\right) \\
& \quad \text { replace } t \text { with new triangle(s) in } T
\end{aligned}
$$

Iteration Depth [BGuSSu'16]: $O(\log n)$
(w.h.p. for random ordering of P)

Parallel incremental Delaunay is widely used in practice, but it was not previously known whether it is theoretically efficient.

More Iterative Sequential Algorithms

Graph Connectivity using union-find

$$
\begin{aligned}
& \text { graph } G=(V, E) \\
& \mathrm{F}=\text { a union } f \text { ind data structure on } V \\
& \text { for } i=1 \text { to }|E| \\
& \quad u=\mathrm{F} . \mathrm{find}(E[i] \cdot u) \\
& \quad v=\mathrm{F} . \mathrm{find}(E[i] \cdot v) \\
& \quad \text { if }(u \neq v) \text { then } \operatorname{F.union}(u, v)
\end{aligned}
$$

More Iterative Sequential Algorithms

Graph Connectivity using union-find

$$
\begin{aligned}
& \text { graph } G=(V, E) \\
& \mathrm{F}=\text { a union } f \text { ind data structure on } V \\
& \text { for } i=1 \text { to }|E| \\
& \quad u=\mathrm{F} . \mathrm{find}(E[i] \cdot u) \\
& \quad v=\mathrm{F} . \mathrm{find}(E[i] \cdot v) \\
& \quad \text { if }(u \neq v) \text { then } \operatorname{F} . \text { union }(u, v)
\end{aligned}
$$

Iteration Depth: TDB (open problem)

Some Sequential Algorithms

are Almost Always

Parallel

Some Many Sequential Algorithms

- Iterative sequential algorithms such as:

Knuth shuffle, greedy MIS, greedy maximal matching, list contraction, tree contraction, linear programming, Delaunay triangulation
are Almost Always

Parallel

Some Many Sequential Algorithms

- Iterative sequential algorithms such as:

Knuth shuffle, greedy MIS, greedy maximal matching, list contraction, tree contraction, linear programming, Delaunay triangulation
are Almost Always

- For almost all input orders (i.e. whp over random order) Or for almost all random choices (Knuth shuffle)
Parallel

Some Many Sequential Algorithms

- Iterative sequential algorithms such as:

Knuth shuffle, greedy MIS, greedy maximal matching, list contraction, tree contraction, linear programming, Delaunay triangulation
are Almost Always

- For almost all input orders (i.e. whp over random order) Or for almost all random choices (Knuth shuffle)
Parallel
- Polylogarithmic dependence depth

Why care?

Why care?

Intellectual curiosity

- Lots of work on parallel algorithms, but perhaps sequential ones are already parallel

Why care?

Intellectual curiosity

- Lots of work on parallel algorithms, but perhaps sequential ones are already parallel

Application to parallel and distributed algorithms (Theory)

- Surprisingly simple solutions to basic problems
- Possible way to attack new problems
- Theoretical justification to current practice

Why care?

Intellectual curiosity

- Lots of work on parallel algorithms, but perhaps sequential ones are already parallel

Application to parallel and distributed algorithms (Theory)

- Surprisingly simple solutions to basic problems
- Possible way to attack new problems
- Theoretical justification to current practice

Application to parallel and distributed algorithms (Practice)

- Fast and simple code
- Generic techniques to parallelize code
- Determinacy

How to Analyze Dependence Depth

Knuth Shuffle: Iteration Depth

$$
\begin{aligned}
& \text { for } i=n-1 \text { downto } 0 \\
& H[i]=\operatorname{rand}(\{0, \ldots, i\}) \\
& \operatorname{swap}(A[H[i]], A[i])
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{array} . \begin{array}{ll}
&
\end{array} \\
& \hline
\end{aligned}
$$

Knuth Shuffle: Iteration Depth

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{array} . \begin{array}{ll}
&
\end{array} \\
& \hline
\end{aligned}
$$

Knuth Shuffle: Iteration Depth

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{array} . \begin{array}{ll}
&
\end{array} \\
& \hline
\end{aligned}
$$

Chosen locations

Knuth Shuffle: Iteration Depth

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Chosen locations

Actual dependences

Knuth Shuffle: Iteration Depth

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Actual dependences

Rearranged

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array} \\
& \mathrm{H}\left[\mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 & ? \\
\hline
\end{array}\right.
\end{aligned}
$$

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \mathrm{H}[\mathrm{i}] & =\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 & ? \\
\hline
\end{array}
\end{array} . \begin{array}{ll}
& \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Not including 8

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 & ? \\
\hline
\end{array}
\end{aligned}
$$

Not including 8

Possible positions of 8

Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

$$
\begin{aligned}
& \mathrm{i}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array} \\
& H[i]=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 & ? \\
\hline
\end{array}
\end{aligned}
$$

Not including 8

Possible positions of 8

All equally likely, so equivalent to random BST.

Maximal Independent Set, Bound on Depth

```
graph G = (V,E), S[1,\ldots,n]= unknown, n=|V|
for i=1 to n
    if for any earlier neighbor }\mp@subsup{v}{j}{}\mathrm{ of }\mp@subsup{v}{i}{},S[j]=\mathrm{ in
    then S[i]= out else S[i]= in
```


Maximal Independent Set, Bound on Depth

graph $G=(V, E), S[1, \ldots, n]=$ unknown, $n=|V|$ for $i=1$ to n
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in then $S[i]=$ out else $S[i]=$ in

Known results

- Lexicographically first MIS is P-complete [Cook '85]
- $O\left(\log ^{2} n\right)$ dependence depth for random graphs w.h.p.
[Coppersmith, Raghavan, Tompa '89]
- $O(\log n)$ depth for random graphs w.h.p. [Calkin, Frieze '90]
- $O\left(\log ^{2} n\right)$ depth for arbitrary graph in random order
- Many parallel algorithms (e.g. Luby).

Maximal Independent Set, Bound on Depth

graph $G=(V, E), S[1, \ldots, n]=$ unknown, $n=|V|$ for $i=1$ to n
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in then $S[i]=$ out else $S[i]=$ in

Definition (Residual graph on step i)

The graph that is left after step i

After iteration 1
After iteration 2

Maximal Independent Set, Bound on Depth

$$
\begin{aligned}
& \text { graph } G=(V, E), S[1, \ldots, n]=\text { unknown, } n=|V| \\
& \text { for } i=1 \text { to } n \\
& \text { if for any earlier neighbor } v_{j} \text { of } v_{i}, S[j]=\text { in } \\
& \text { then } S[i]=\text { out else } S[i]=\text { in }
\end{aligned}
$$

Lemma (Degree)

After step i, the maximum degree in the residual graph is $O(n \log n / i)$ w.h.p. (over orderings of V).

Maximal Independent Set, Bound on Depth

graph $G=(V, E), S[1, \ldots, n]=$ unknown, $n=|V|$ for $i=1$ to n
if for any earlier neighbor v_{j} of $v_{i}, S[j]=$ in then $S[i]=$ out else $S[i]=$ in

Lemma (Degree)

After step i, the maximum degree in the residual graph is $O(n \log n / i)$ w.h.p. (over orderings of V).

For example:

For $i=n / 2$ (half done), the max degree is $O(\log n)$ w.h.p.

Maximal Independent Set, Bound on Depth

$$
\begin{aligned}
& \text { graph } G=(V, E), S[1, \ldots, n]=\text { unknown, } n=|V| \\
& \text { for } i=1 \text { to } n \\
& \text { if for any earlier neighbor } v_{j} \text { of } v_{i}, S[j]=\text { in } \\
& \text { then } S[i]=\text { out else } S[i]=\text { in }
\end{aligned}
$$

Lemma (Degree)

After step i, the maximum degree in the residual graph is $O(n \log n / i)$ w.h.p. (over orderings of V).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on step i. The probability of selecting one of the neighbors on each step $j(\leq i)$ is at least d / n. The probability it survives all steps j is therefore at most $(1-d / n)^{i}$, leading to the result.

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

$\log n$	$2 \log n$	$4 \log n$

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

w.h.p. no path within a block is greater than $O(\log n)$

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

Proof outline: For each block i

- Prob. of edge beween two iterations is at most $\frac{1}{2^{i}}$ (by Degree Lemma)
- number of paths of length $/$ is $\binom{2^{i} \operatorname{logn}}{I}$

By the union bound the prob. of any path of length $/$ is at most

$$
\left(\frac{1}{2^{i}}\right)^{\prime}\binom{2^{i} \log n}{1}<\left(\frac{1}{2^{i}}\right)^{\prime}\left(\frac{e 2^{i} \log n}{l}\right)^{\prime}=\left(\frac{e \log n}{l}\right)^{\prime}
$$

Therefore probability is very small that $l>2 e \log n$.

Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

Summary

Since path within each block is $O(\log n)$, and number of blocks is $O(\log n)$, total depth is $O\left(\log ^{2} n\right)$.

Can be improved to $O\left(\log n \log d_{\max }\right)$ by picking blocks of size $2^{i} \frac{d_{\text {max }}}{n} \log n$.

Concrete Algorithms and Implementation

Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of "rounds" each iteration can check if it has any unresolved dependences.

Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of "rounds" each iteration can check if it has any unresolved dependences.

Sufficient condition (true for all our examples):

(1) Each i independently can identify active locations l_{i}, s.t.,
(2) pending iterations in every prefix $0, \ldots, i$ only update $\cup_{j \in[i]} l_{j}$.

| iteration | 0 1 2 3 4 5 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | active |
| :--- | :--- | :--- | :--- | :--- | :--- |
| locations |

Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of "rounds" each iteration can check if it has any unresolved dependences.

Sufficient condition (true for all our examples):

(1) Each i independently can identify active locations l_{i}, s.t.,
(2) pending iterations in every prefix $0, \ldots, i$ only update $\cup_{j \in[i]} l_{j}$.

Suggests an implementation strategy:
While there are pending iterations:
reserve: in parallel pending iterations find active locations and mark them
commit: in parallel each pending iteration runs, but aborts if it depends on an active previous location

Implication For Algorithms

Parallel (Priority PRAM)

	Work	Depth (Time)
MIS	$O(\|E\|)$	$O\left(\log ^{2}\|V\| \log \Delta\right)$
Maximal Matching	$O(\|E\|)$	$O\left(\log ^{2}\|V\| \log \Delta\right)$
BST Sort	$O(n \log n)$	$O(\log n)$
Knuth Shuffle	$O(n)$	$O\left(\log n \log ^{*} n\right)$
List Contraction	$O(n)$	$O\left(\log n \log ^{*} n\right)$
2d Linear Programming	$O(n)$	$O(\log n)$
Delaunay triangulation	$O(n \log n)$	$O\left(\log ^{2} n\right)$

All are work efficient. $\quad \Delta=$ maximum degree

Implication For Algorithms

Parallel (Priority PRAM)

	Work	Depth (Time)
MIS	$O(\|E\|)$	$O\left(\log ^{2}\|V\| \log \Delta\right)$
Maximal Matching	$O(\|E\|)$	$O\left(\log ^{2}\|V\| \log \Delta\right)$
BST Sort	$O(n \log n)$	$O(\log n)$
Knuth Shuffle	$O(n)$	$O\left(\log n \log ^{*} n\right)$
List Contraction	$O(n)$	$O\left(\log n \log ^{*} n\right)$
2d Linear Programming	$O(n)$	$O(\log n)$
Delaunay triangulation	$O(n \log n)$	$O\left(\log ^{2} n\right)$

All are work efficient. $\Delta=$ maximum degree

Distributed (Congest model)

	Rounds
MIS	$O(\log \|V\| \log \Delta)$
Maximal Matching	$O(\log \|V\| \log \Delta)$

Implementation: Speculative For

struct step \{
bool reserve(int i) \{
reserves locations that will be written by iteration i\}
bool commit(int i) \{ checks locations iteration i depends on, and runs if safe\}\};

Implementation: Speculative For

struct step \{
bool reserve(int i) \{
reserves locations that will be written by iteration i\}
bool commit(int i) \{ checks locations iteration i depends on, and runs if safe\}\};
speculative_for(Step(..), 0, n); // 0,..., $n=$ range of iterations

Implementation: Speculative For

struct step \{

bool reserve(int i) \{
reserves locations that will be written by iteration i\}
bool commit(int i) \{ checks locations iteration i depends on, and runs if safe\}\};
speculative_for(Step(..), 0, n); // 0,..., n= range of iterations
speculative_for will repeat the following until done:

- picks a prefix of remaining (pending) iterations
- in parallel runs the reserve on the prefix
- in parallel runs the commit on the prefix
- removes completed iterations (commit returns 1)

Implementation: Speculative For

struct step \{

bool reserve(int i) \{
reserves locations that will be written by iteration i\}
bool commit(int i) \{ checks locations iteration i depends on, and runs if safe\}\};
speculative_for(Step(..), 0, n); // 0,..., n= range of iterations
speculative_for will repeat the following until done:

- picks a prefix of remaining (pending) iterations
- in parallel runs the reserve on the prefix
- in parallel runs the commit on the prefix
- removes completed iterations (commit returns 1)

Can dynamically choose size of prefix.

Knuth Shuffle Code

```
struct knuth_step {
    bool reserve(int i) {
        write_min(R[i], i); write_min(R[H[i]], i);
        return 1; }
    bool commit (int i) {
        int h = H[i];
        if(R[H[i]] == i) {
        if(R[i] == i) {swap(A[i],A[H[i]]); R[i] = inf; return 1;}
        R[H[i]] = inf;}
        return 0; }
};
```

speculative_for(knuth_step(..), 0, n);

```
struct mis_step \{
    bool reserve(int i) \{
        flag \(=\) In;
        for (int \(j=0 ; j<G[i] . d e g r e e ; ~ j++)\) \{
        int ngh \(=\) G[i].Neighbors[j];
        if ( \(\mathrm{ngh}<\mathrm{i}\) ) \{
            if (S[ngh] == In) \{ flag = Out; return \(1 ;\}\)
            else if (S[ngh] == Unknown) flag = Unknown; \}\}
        return 1;\}
    bool commit(int i) \{ return (S[i] = flag) != Unknown;\}
\};
```

speculative_for(mis_step(..), 0, n);

Spanning Tree Code

```
struct union_find_step \{
    bool reserve(int i) \{
        \(\mathrm{u}=\mathrm{UF} . \mathrm{find}(\mathrm{E}[\mathrm{i}] . \mathrm{u})\);
        \(\mathrm{v}=\mathrm{UF} . \mathrm{find}(\mathrm{E}[\mathrm{i}] . \mathrm{v})\);
        if (u > v) \(\operatorname{swap}(u, v)\);
        if (u ! = v) \{ write_min(R[v], i); return 1 ;
        \} else return 0 ; \}
    bool commit(int i) \{
        if \((\mathrm{R}[\mathrm{v}]==\mathrm{i})\{\mathrm{UF} . \operatorname{link}(\mathrm{v}, \mathrm{u})\); return 1 ; \}
        else return 0 ; \}
\};
```

speculative_for(union_find_step(..), 0, m);

tseq $=$ best sequential algorithm
t1 = time on one core
t64 $=$ time on all cores

Timings on a 64-core Xeon Phi

tseq $=$ best sequential algorithm
t1 = time on one core
t64 $=$ time on all cores

End Matter

Conclusions

(1) Many sequential algorithms are "inherently" parallel, at least when randomly ordering.

- Perhaps should be thinking of algorithms more abstractly in terms of their dependence graph instead of specific model.
(2) Can often take advantage of the parallelism using reservations
(3) Resulting code is simple, fast, and deterministic

End Matter

Conclusions

(1) Many sequential algorithms are "inherently" parallel, at least when randomly ordering.

- Perhaps should be thinking of algorithms more abstractly in terms of their dependence graph instead of specific model.
(2) Can often take advantage of the parallelism using reservations
(3) Resulting code is simple, fast, and deterministic

Open Questions

(1) Depth of MIS
(2) Resolving dependences in a more general context.

