Some Sequential Algorithms are Almost Always Parallel

Guy Blelloch

Carnegie Mellon University

July 2017

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel 1 / 35

Some Sequential Algorithms ? are Almost Always ? Parallel ?

3.5 3

Joint work with Jeremy Fineman, Phil Gibbons, Yan Gu, Julian Shun, and Yihan Sun [BFS SPAA'12], [BFGS PPOPP'12], [SGuBFG SODA'15], [BGuSSu SPAA'16].

for i = 1 to n do something

- 4 ⊒ →

æ

SPAA/PODC 2017

2

for
$$i = 1$$
 to n
a[i] = f(a[i-1])

Fully Sequential (for arbitrary *f*) Each iteration depends on all previous iterations.

for
$$i = 1$$
 to n
a[i] = a[i] + 1

2

for
$$i = 1$$
 to n
a[i] = a[i] + 1

Fully "parallel" No dependences among iterations.

for
$$i = \sqrt{n} + 1$$
 to n
a[i] = f(a[i- \sqrt{n}])

SPAA/PODC 2017

2

for
$$i = \sqrt{n} + 1$$
 to n
a[i] = f(a[i- \sqrt{n}])

 $i \rightarrow j$ means j depends on i

for
$$i = \sqrt{n} + 1$$
 to n
a[i] = f(a[i- \sqrt{n}])

$$i \rightarrow j$$
 means j depends on i

Partially parallel. Some dependences, but they are not affected by the data. In this case dependence depth is \sqrt{n} .

$$A = an input array of length n for $i = n - 1$ downto 0
 H[i] = rand({0,...,i})
 swap(A[H[i]],A[i])$$


```
A = \text{ an input array of length } n
for i = n - 1 downto 0
H[i] = rand(\{0, \dots, i\})
swap(A[H[i]], A[i])
```


$$\begin{aligned} A &= \text{ an input array of length } n \\ \text{for } i &= n-1 \text{ downto } 0 \\ \text{H}[i] &= \text{ rand}(\{0, \dots, i\}) \\ \text{swap}(\text{A}[\text{H}[i]], \text{A}[i]) \end{aligned}$$


```
A = \text{ an input array of length } n
for i = n - 1 downto 0
H[i] = rand(\{0, \dots, i\})
swap(A[H[i]], A[i])
```


$$\begin{aligned} A &= \text{ an input array of length } n \\ \text{for } i &= n-1 \text{ downto } 0 \\ \text{H}[i] &= \text{ rand}(\{0, \dots, i\}) \\ \text{swap}(\text{A}[\text{H}[i]], \text{A}[i]) \end{aligned}$$

$$\begin{aligned} A &= \text{ an input array of length } n \\ \text{for } i &= n-1 \text{ downto } 0 \\ \text{H}[i] &= \text{rand}(\{0, \dots, i\}) \\ \text{swap}(\text{A}[\text{H}[i]], \text{A}[i]) \end{aligned}$$


```
A = an input array of length n
for i = n - 1 downto 0
H[i] = rand({0,...,i})
swap(A[H[i]],A[i])
```

Dependences depend on data.

Question: What can we say about dependence depth over the **random choices**?

```
A = \text{ an input array of length } n
for i = n - 1 downto 0
H[i] = rand(\{0, \dots, i\})
swap(A[H[i]], A[i])
```

Dependences depend on data.

Question: What can we say about dependence depth over the **random choices**?

```
Answer [SGuBFG'15]: O(\log n) w.h.p.
```


undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

Dependences for this simple cycle graph?

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

Fully sequential

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

Same graph, different ordering of V. Dependences now?

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

Parallel?

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

SPAA/PODC 2017

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

Question: what is the dependence depth for a **random order of the vertices**?

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

Question: what is the dependence depth for a **random order of the vertices**?

Answer [BFS'12]: $O(\log^2 n)$ (w.h.p. for random ordering of *V*, i.e. if we randomly permute *V*)

undirected graph G = (V, E), S[1, ..., n] = unknown for i = 1 to |V|if for any earlier neighbor v_j of v_i , S[j] = in then S[i] = out else S[i] = in

Question: what is the dependence depth for a **random order of the vertices**?

Answer [BFS'12]: $O(\log^2 n)$ (w.h.p. for random ordering of *V*, i.e. if we randomly permute *V*) **Open problem:** $O(\log n)$ w.h.p.? for i = 1 to n do something

Simple model:

- Each iterate is a vertex
- $i \rightarrow j$ means j depends on i

for i = 1 to n do something

Simple model:

- Each iterate is a vertex
- $i \rightarrow j$ means j depends on i

Iteration Depth:

the longest chain of dependences.

for i = 1 to n do something

Simple model:

- Each iterate is a vertex
- $i \rightarrow j$ means j depends on i

Iteration Depth:

the longest chain of dependences.

Overall Depth:

weighted by depth of each iteration.

Nested iterations

э

- 4 ⊒ →

Nested iterations

3.5 3

Only Two Examples?

- Knuth shuffle
- Greedy MIS

æ

E + 4 E +

Greedy Maximal Matching

Graph
$$G = (V, E)$$
 and
 $A[1, ..., |V|] = \text{true}$ // $A[i]$ if vertex *i* is available
 $M[1, ..., |E|] = \text{false}$ // $M[j]$ if edge *j* is in matching
for $i = 1$ to $|E|$
 $(u, v) = E[i]$
if $(A[u] \text{ and } A[v])$
then $M[i] = \text{true}$, $A[u] = \text{false}$, $A[v] = \text{false}$

Iteration Depth [BFS'12]: $O(\log^2 |V|)$ (w.h.p. for random ordering of *E*)

List contraction

$$A =$$
 an array containing *n* links of doubly linked lists
for $i = 0$ to $n - 1$
 $A[i].next.previous = A[i].previous$
 $A[i].previous.next = A[i].next$

List contraction

$$A =$$
 an array containing *n* links of doubly linked lists
for $i = 0$ to $n - 1$
 $A[i].next.previous = A[i].previous$
 $A[i].previous.next = A[i].next$

э

List contraction

$$A$$
 = an array containing *n* links of doubly linked lists
for $i = 0$ to $n - 1$
 $A[i].next.previous = A[i].previous$
 $A[i].previous.next = A[i].next$

Applications of:

- length of lists or list ranking
- size or number of cycles in a permutation
- Euler tour, biconnectivity,...

List contraction

$$A =$$
 an array containing *n* links of doubly linked lists
for $i = 0$ to $n - 1$
 $A[i].next.previous = A[i].previous$
 $A[i].previous.next = A[i].next$

Iteration Depth [SGuBFG'15]: $O(\log n)$ (w.h.p. for random ordering of *A*)

Sorting by insertion into a binary search tree (BST)

```
A = an array of keys

T = empty binary tree

for i = 1 to n

BST_insert(T, A[i])
```

Sorting by insertion into a binary search tree (BST)

$$A =$$
 an array of keys
 $T =$ empty binary tree
for $i = 1$ to n
 $BST_insert(T, A[i])$

Sorting by insertion into a binary search tree (BST)

A = an array of keys T = empty binary tree for i = 1 to n $BST_insert(T, A[i])$

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of A)

Sorting by insertion into a binary search tree (BST)

A = an array of keys T = empty binary tree for i = 1 to n $BST_insert(T, A[i])$

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of A)

Overall Depth: $O(\log n)$

Sorting by insertion into a binary search tree (BST)

A = an array of keys T = empty binary tree for i = 1 to n $BST_insert(T, A[i])$

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of *A*)

SPAA/PODC 2017

14 / 35

Constraints (lines)
$$C = c_1, \ldots, c_n$$

 $p = (\infty, 0)$
for $i = 1$ to n
if p violates c_i
 $p = \min$ intersection of c_1, \ldots, c_{i-1} along c_i

two-dimensional linear programming

Constraints (lines)
$$C = c_1, \ldots, c_n$$

 $p = (\infty, 0)$
for $i = 1$ to n
if p violates c_i
 $p = \min$ intersection of c_1, \ldots, c_{i-1} along c_i

Example:

SPAA/PODC 2017

15 / 35

two-dimensional linear programming

Constraints (lines)
$$C = c_1, \ldots, c_n$$

 $p = (\infty, 0)$
for $i = 1$ to n
if p violates c_i
 $p = \min$ intersection of c_1, \ldots, c_{i-1} along c_i

two-dimensional linear programming

Constraints (lines)
$$C = c_1, \ldots, c_n$$

 $p = (\infty, 0)$
for $i = 1$ to n
if p violates c_i
 $p = \min$ intersection of c_1, \ldots, c_{i-1} along c_i

Example:

SPAA/PODC 2017

Constraints (lines)
$$C = c_1, \ldots, c_n$$

 $p = (\infty, 0)$
for $i = 1$ to n
if p violates c_i
 $p = \min$ intersection of c_1, \ldots, c_{i-1} along c_i

Total work: O(n) (w.h.p. for random ordering of *C*)

Constraints (lines)
$$C = c_1, \ldots, c_n$$

 $p = (\infty, 0)$
for $i = 1$ to n
if p violates c_i
 $p = \min$ intersection of c_1, \ldots, c_{i-1} along c_i

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of *C*)

Constraints (lines)
$$C = c_1, \ldots, c_n$$

 $p = (\infty, 0)$
for $i = 1$ to n
if p violates c_i
 $p = \min$ intersection of c_1, \ldots, c_{i-1} along c_i

Total work: O(n) (w.h.p. for random ordering of C)

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of *C*)

Overall Depth: $O(\log(n) \log \log(n))$ (log log(n) term for min intersection)

Delaunay triangulation

points
$$P = p_1, ..., p_n$$

 $T = \{\text{boundingTriangle of } P\}$
for $i = 1$ to n
for t in conflictSet (p_i, T)
replace t with new triangle(s) in T

Delaunay triangulation

points
$$P = p_1, ..., p_n$$

 $T = \{\text{boundingTriangle of } P\}$
for $i = 1$ to n
for t in conflictSet (p_i, T)
replace t with new triangle(s) in T

Delaunay triangulation

points
$$P = p_1, ..., p_n$$

 $T = \{\text{boundingTriangle of } P\}$
for $i = 1$ to n
for t in conflictSet (p_i, T)
replace t with new triangle(s) in T

Delaunay triangulation

points
$$P = p_1, ..., p_n$$

 $T = \{\text{boundingTriangle of } P\}$
for $i = 1$ to n
for t in conflictSet (p_i, T)
replace t with new triangle(s) in T

Delaunay triangulation

points
$$P = p_1, ..., p_n$$

 $T = \{\text{boundingTriangle of } P\}$
for $i = 1$ to n
for t in conflictSet (p_i, T)
replace t with new triangle(s) in T

Delaunay triangulation

points
$$P = p_1, ..., p_n$$

 $T = \{\text{boundingTriangle of } P\}$
for $i = 1$ to n
for t in conflictSet (p_i, T)
replace t with new triangle(s) in T

Delaunay triangulation

```
points P = p_1, ..., p_n

T = \{\text{boundingTriangle of } P\}

for i = 1 to n

for t in conflictSet(p_i, T)

replace t with new triangle(s) in T
```

Total Work: $O(n \log n)$ (w.h.p. for random ordering of P)

More Iterative Sequential Algorithms

Delaunay triangulation

```
points P = p_1, ..., p_n

T = \{\text{boundingTriangle of } P\}

for i = 1 to n

for t in conflictSet(p_i, T)

replace t with new triangle(s) in T
```

Iteration Depth [BGuSSu'16]: $O(\log n)$ (w.h.p. for random ordering of *P*)

More Iterative Sequential Algorithms

Delaunay triangulation

```
points P = p_1, ..., p_n

T = \{\text{boundingTriangle of } P\}

for i = 1 to n

for t in conflictSet(p_i, T)

replace t with new triangle(s) in T
```

```
Iteration Depth [BGuSSu'16]: O(\log n) (w.h.p. for random ordering of P)
```

Analysis requires allowing subiterations to proceed independently.

Delaunay triangulation

```
points P = p_1, ..., p_n

T = \{\text{boundingTriangle of } P\}

for i = 1 to n

for t in conflictSet(p_i, T)

replace t with new triangle(s) in T
```

```
Iteration Depth [BGuSSu'16]: O(\log n) (w.h.p. for random ordering of P)
```

Parallel incremental Delaunay is **widely used in practice**, but it was not previously known whether it is theoretically efficient.

Graph Connectivity using union-find

graph
$$G = (V, E)$$

 $F = a$ union find data structure on V
for $i = 1$ to $|E|$
 $u = F.find(E[i].u)$
 $v = F.find(E[i].v)$
if $(u \neq v)$ then $F.union(u, v)$

Graph Connectivity using union-find

graph
$$G = (V, E)$$

 $F = a$ union find data structure on V
for $i = 1$ to $|E|$
 $u = F.find(E[i].u)$
 $v = F.find(E[i].v)$
if $(u \neq v)$ then $F.union(u, v)$

Iteration Depth: TDB (open problem)

Some Sequential Algorithms

are Almost Always

Parallel

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel 18 / 35

э

Some Many Sequential Algorithms

- Iterative sequential algorithms such as: Knuth shuffle, greedy MIS, greedy maximal matching, list contraction, tree contraction, linear programming, Delaunay triangulation
- are Almost Always

Parallel

Some Many Sequential Algorithms

 Iterative sequential algorithms such as: Knuth shuffle, greedy MIS, greedy maximal matching, list contraction, tree contraction, linear programming, Delaunay triangulation

are Almost Always

• For almost all input orders (i.e. whp over random order) Or for almost all random choices (Knuth shuffle)

Parallel

Some Many Sequential Algorithms

 Iterative sequential algorithms such as: Knuth shuffle, greedy MIS, greedy maximal matching, list contraction, tree contraction, linear programming, Delaunay triangulation

are Almost Always

• For almost all input orders (i.e. whp over random order) Or for almost all random choices (Knuth shuffle)

Parallel

• Polylogarithmic dependence depth

Why care?

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel 19 / 35

<ロ> (日) (日) (日) (日) (日)

æ

Intellectual curiosity

• Lots of work on parallel algorithms, but perhaps sequential ones are already parallel

→

э

Intellectual curiosity

• Lots of work on parallel algorithms, but perhaps sequential ones are already parallel

Application to parallel and distributed algorithms (Theory)

- Surprisingly simple solutions to basic problems
- Possible way to attack new problems
- Theoretical justification to current practice

Intellectual curiosity

• Lots of work on parallel algorithms, but perhaps sequential ones are already parallel

Application to parallel and distributed algorithms (Theory)

- Surprisingly simple solutions to basic problems
- Possible way to attack new problems
- Theoretical justification to current practice

Application to parallel and distributed algorithms (Practice)

- Fast and simple code
- Generic techniques to parallelize code
- Determinacy

19 / 35

How to Analyze Dependence Depth

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel 20 / 35

æ

→

```
for i = n - 1 downto 0
H[i] = rand({0,...,i})
swap(A[H[i]],A[i])
```


э

$$i = \boxed{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}$$
$$H[i] = \boxed{0 \ 0 \ 1 \ 3 \ 1 \ 2 \ 3 \ 1}$$

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel 22 / 35

æ

э

→

SPAA/PODC 2017

э

.∋...>

Adding one more, i.e., proof by induction

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel 23 / 35

3

Adding one more, i.e., proof by induction

SPAA/PODC 2017

Adding one more, i.e., proof by induction

SPAA/PODC 2017

Adding one more, i.e., proof by induction

All equally likely, so equivalent to random BST.

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel

23 / 35

graph
$$G = (V, E)$$
, $S[1, ..., n] =$ unknown, $n = |V|$
for $i = 1$ to n
if for any earlier neighbor v_j of v_i , $S[j] =$ in
then $S[i] =$ out else $S[i] =$ in

(日)

graph
$$G = (V, E)$$
, $S[1, ..., n] =$ unknown, $n = |V|$
for $i = 1$ to n
if for any earlier neighbor v_j of v_i , $S[j] =$ in
then $S[i] =$ out else $S[i] =$ in

Known results

- Lexicographically first MIS is P-complete [Cook '85]
- O(log² n) dependence depth for random graphs w.h.p. [Coppersmith, Raghavan, Tompa '89]
- $O(\log n)$ depth for random graphs w.h.p. [Calkin, Frieze '90]
- $O(\log^2 n)$ depth for arbitrary graph in random order
- Many parallel algorithms (e.g. Luby).

graph
$$G = (V, E)$$
, $S[1, ..., n] =$ unknown, $n = |V|$
for $i = 1$ to n
if for any earlier neighbor v_j of v_i , $S[j] =$ in
then $S[i] =$ out else $S[i] =$ in

Definition (Residual graph on step *i*)

The graph that is left after step i

graph
$$G = (V, E)$$
, $S[1, ..., n] =$ unknown, $n = |V|$
for $i = 1$ to n
if for any earlier neighbor v_j of v_i , $S[j] =$ in
then $S[i] =$ out else $S[i] =$ in

Lemma (Degree)

After step *i*, the maximum degree in the residual graph is $O(n \log n/i)$ w.h.p. (over orderings of V).

graph
$$G = (V, E)$$
, $S[1, ..., n] =$ unknown, $n = |V|$
for $i = 1$ to n
if for any earlier neighbor v_j of v_i , $S[j] =$ in
then $S[i] =$ out else $S[i] =$ in

Lemma (Degree)

After step i, the maximum degree in the residual graph is $O(n \log n/i)$ w.h.p. (over orderings of V).

For example:

For i = n/2 (half done), the max degree is $O(\log n)$ w.h.p.

graph
$$G = (V, E)$$
, $S[1, ..., n] =$ unknown, $n = |V|$
for $i = 1$ to n
if for any earlier neighbor v_j of v_i , $S[j] =$ in
then $S[i] =$ out else $S[i] =$ in

Lemma (Degree)

After step i, the maximum degree in the residual graph is $O(n \log n/i)$ w.h.p. (over orderings of V).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on step i. The probability of selecting one of the neighbors on each step j ($\leq i$) is at least d/n. The probability it survives all steps j is therefore at most $(1 - d/n)^i$, leading to the result.

24 / 35

э

Proof outline: For each block *i*

- Prob. of edge beween two iterations is at most ¹/_{2ⁱ} (by Degree Lemma)
- number of paths of length *I* is $\binom{2^{\prime} logn}{l}$

By the union bound the prob. of any path of length / is at most

$$\left(\frac{1}{2^{i}}\right)^{l} \binom{2^{i} \log n}{l} < \left(\frac{1}{2^{i}}\right)^{l} \left(\frac{e2^{i} \log n}{l}\right)^{l} = \left(\frac{e \log n}{l}\right)$$

Therefore probability is very small that $l > 2e \log n$.

SPAA/PODC 2017

Summary

Since path within each block is $O(\log n)$, and number of blocks is $O(\log n)$, total depth is $O(\log^2 n)$.

Can be improved to $O(\log n \log d_{max})$ by picking blocks of size $2^{i} \frac{d_{max}}{n} \log n$.

Concrete Algorithms and Implementation

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel 26 / 35

표 문 문

Definition (Efficiently Checkable Dependences)

In a constant number of "rounds" each iteration can check if it has any unresolved dependences.

Definition (Efficiently Checkable Dependences)

In a constant number of "rounds" each iteration can check if it has any unresolved dependences.

Sufficient condition (true for all our examples):

- **1** Each *i* independently can identify *active* locations I_i , s.t.,
- 2 pending iterations in every prefix $0, \ldots, i$ only update $\bigcup_{j \in [i]} l_j$.

SPAA/PODC 2017

Definition (Efficiently Checkable Dependences)

In a constant number of "rounds" each iteration can check if it has any unresolved dependences.

Sufficient condition (true for all our examples):

- **1** Each *i* independently can identify *active* locations I_i , s.t.,
- 2 pending iterations in every prefix $0, \ldots, i$ only update $\bigcup_{j \in [i]} l_j$.

Suggests an implementation strategy:

While there are pending iterations:

reserve: in parallel pending iterations find active locations and mark them

commit: in parallel each pending iteration runs, but aborts if it depends on an active previous location

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel

26 / 35

Implication For Algorithms

Parallel (Priority PRAM)

	Work Depth (Time)		
MIS	<i>O</i> (<i>E</i>)	$O(\log^2 V \log \Delta)$	
Maximal Matching	O(E)	$O(\log^2 V \log \Delta)$	
BST Sort	$O(n \log n)$	$O(\log n)$	
Knuth Shuffle	<i>O</i> (<i>n</i>)	$O(\log n \log^* n)$	
List Contraction	<i>O</i> (<i>n</i>)	$O(\log n \log^* n)$	
2d Linear Programming	<i>O</i> (<i>n</i>)	$O(\log n)$	
Delaunay triangulation	$O(n \log n)$	$O(\log^2 n)$	
All are work efficient. $\Delta = \max (\max d = \max d$			

2

E + 4 E +

Implication For Algorithms

Parallel (Priority PRAM)

	Work	Depth (Time)	
MIS	O(E)	$O(\log^2 V \log \Delta)$	
Maximal Matching	O(E)	$O(\log^2 V \log \Delta)$	
BST Sort	$O(n \log n)$	$O(\log n)$	
Knuth Shuffle	<i>O</i> (<i>n</i>)	$O(\log n \log^* n)$	
List Contraction	<i>O</i> (<i>n</i>)	$O(\log n \log^* n)$	
2d Linear Programming	O(n)	$O(\log n)$	
Delaunay triangulation	$O(n \log n)$	$O(\log^2 n)$	
$\Delta = maximum degree$			

All are work efficient.

 $\Delta = \max \operatorname{maximum} \operatorname{degree}$

Distributed (Congest model)		
		Rounds	
	MIS	$O(\log V \log \Delta)$	
	Maximal Matching	$O(\log V \log \Delta)$	J

SPAA/PODC 2017

Some Sequential Algorithms are Almost Always Parallel

```
struct step {
   bool reserve(int i) {
     reserves locations that will be written by iteration i}
   bool commit(int i) {
     checks locations iteration i depends on, and runs if safe}};
```

글 > - + 글 >

```
struct step {
   bool reserve(int i) {
     reserves locations that will be written by iteration i}
   bool commit(int i) {
     checks locations iteration i depends on, and runs if safe}};
```

speculative_for(Step(..), 0, n); // 0,..., n = range of iterations

• • = • • = •

```
struct step {
   bool reserve(int i) {
     reserves locations that will be written by iteration i}
   bool commit(int i) {
     checks locations iteration i depends on, and runs if safe}};
```

speculative_for(Step(..), 0, n); // 0,..., n = range of iterations

speculative_for will repeat the following until done:

- picks a prefix of remaining (pending) iterations
- in parallel runs the reserve on the prefix
- in parallel runs the commit on the prefix
- removes completed iterations (commit returns 1)

(日) (周) (三) (三)

```
struct step {
   bool reserve(int i) {
     reserves locations that will be written by iteration i}
   bool commit(int i) {
     checks locations iteration i depends on, and runs if safe}};
```

speculative_for(Step(..), 0, n); // 0,..., n = range of iterations

speculative_for will repeat the following until done:

- picks a prefix of remaining (pending) iterations
- in parallel runs the reserve on the prefix
- in parallel runs the commit on the prefix
- removes completed iterations (commit returns 1)

Can dynamically choose size of prefix.

(日) (同) (日) (日) (日)

```
struct knuth_step {
   bool reserve(int i) {
      write_min(R[i], i); write_min(R[H[i]], i);
      return 1; }
   bool commit (int i) {
      int h = H[i];
      if(R[H[i]] == i) {
        if(R[H[i]] == i) {swap(A[i],A[H[i]]); R[i] = inf; return 1;}
        R[H[i]] = inf;}
   return 0; }
};
```

```
speculative_for(knuth_step(..), 0, n);
```

3

MIS Code

```
struct mis_step {
   bool reserve(int i) {
     flag = In;
     for (int j = 0; j < G[i].degree; j++) {
        int ngh = G[i].Neighbors[j];
        if (ngh < i) {
            if (S[ngh] == In) { flag = Out; return 1; }
            else if (S[ngh] == Unknown) flag = Unknown; }}
     return 1; }
   bool commit(int i) { return (S[i] = flag) != Unknown; }
};</pre>
```

speculative_for(mis_step(..), 0, n);

3

```
struct union_find_step {
   bool reserve(int i) {
        u = UF.find(E[i].u);
        v = UF.find(E[i].v);
        if (u > v) swap(u,v);
        if (u != v) { write_min(R[v], i); return 1;
        } else return 0; }
   bool commit(int i) {
        if (R[v] == i) { UF.link(v, u); return 1; }
        else return 0; }
};
```

speculative_for(union_find_step(..), 0, m);

Timings on a 64-core Xeon Phi

tseq = best sequential algorithm t1 = time on one core t64 = time on all cores

SPAA/PODC 2017

э

Timings on a 64-core Xeon Phi

tseq = best sequential algorithm t1 = time on one core t64 = time on all cores

SPAA/PODC 2017

э

End Matter

Conclusions

- Many sequential algorithms are "inherently" parallel, at least when randomly ordering.
 - Perhaps should be thinking of algorithms more abstractly in terms of their dependence graph instead of specific model.
- ② Can often take advantage of the parallelism using reservations
- **③** Resulting code is **simple**, **fast**, and **deterministic**

End Matter

Conclusions

- Many sequential algorithms are "inherently" parallel, at least when randomly ordering.
 - Perhaps should be thinking of algorithms more abstractly in terms of their dependence graph instead of specific model.
- ② Can often take advantage of the parallelism using reservations
- Sesulting code is simple, fast, and deterministic

Open Questions

- Depth of MIS
- 2 Resolving dependences in a more general context.