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Iterative Sequential Algorithms

for i = 1 to n

do something
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Iterative Sequential Algorithms

for i = 1 to n

a[i] = f(a[i-1])

Fully Sequential (for arbitrary f )
Each iteration depends on all previous iterations.
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Iterative Sequential Algorithms

for i = 1 to n

a[i] = a[i] + 1

Fully “parallel”
No dependences among iterations.
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Iterative Sequential Algorithms

for i =
√
n + 1 to n

a[i] = f(a[i-
√
n])

2 3 4 5 6 7 8i = 1 9

i → j means j depends on i

Partially parallel.
Some dependences, but they are not affected by the data.
In this case dependence depth is

√
n.
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Iterative Sequential Algorithms

?

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])
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Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])
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Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Dependences?

0 1 2 3 4 5 6 7i =

0 0 1 2 3 4 5 6H[i] =
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Iterative Sequential Algorithms

Knuth’s shuffle to generate a random permutation of A

A = an input array of length n
for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Dependences depend on data.

Question: What can we say about dependence depth over the
random choices?
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for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

Dependences depend on data.

Question: What can we say about dependence depth over the
random choices?

Answer [SGuBFG’15]: O(log n) w.h.p.
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Iterative Sequential Algorithms

?

undirected graph G = (V ,E ), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in
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undirected graph G = (V ,E ), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in

Dependences for this simple cycle graph?
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Greedy Maximal Independent Set

undirected graph G = (V ,E ), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in

Same graph, different ordering of V . Dependences now?
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Greedy Maximal Independent Set

undirected graph G = (V ,E ), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in
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Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E ), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in

Question: what is the dependence depth for a random order of
the vertices?
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Greedy Maximal Independent Set

undirected graph G = (V ,E ), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in

Question: what is the dependence depth for a random order of
the vertices?

Answer [BFS’12]: O(log2 n)
(w.h.p. for random ordering of V , i.e. if we randomly permute V )
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Iterative Sequential Algorithms

Greedy Maximal Independent Set

undirected graph G = (V ,E ), S [1, . . . , n] = unknown

for i = 1 to |V |
if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in

Question: what is the dependence depth for a random order of
the vertices?

Answer [BFS’12]: O(log2 n)
(w.h.p. for random ordering of V , i.e. if we randomly permute V )
Open problem: O(log n) w.h.p.?
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Dependence Depth

for i = 1 to n

do something

Simple model:

Each iterate is a vertex

i → j means j depends on i

Iterations

1 2

3 6

4 5

7
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Dependence Depth

for i = 1 to n

do something

Simple model:

Each iterate is a vertex

i → j means j depends on i

Iteration Depth:
the longest chain of dependences.

Overall Depth:
weighted by depth of each iteration.

Iterations

1 2

3 6

4 5

7
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Dependence Depth

Nested iterations

1 2 3 4 5

Sequential loops
within iterations

Iterations
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Dependence Depth

Nested iterations

1 2 3 4 5

Parallel loops
within iteration

Iterations
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Only Two Examples?

1 Knuth shuffle

2 Greedy MIS
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More Iterative Sequential Algorithms

Greedy Maximal Matching

Graph G = (V ,E ) and

A[1, . . . , |V |] = true // A[i ] if vertex i is available
M[1, . . . , |E |] = false // M[j ] if edge j is in matching
for i = 1 to |E |

(u, v) = E [i ]
if (A[u] and A[v ])
then M[i ] = true, A[u] = false, A[v ] = false

Iteration Depth [BFS’12]: O(log2 |V |)
(w.h.p. for random ordering of E )
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More Iterative Sequential Algorithms

List contraction

A = an array containing n links of doubly linked lists
for i = 0 to n − 1

A[i ].next.previous = A[i ].previous
A[i ].previous.next = A[i ].next

2 3 4 5 6 7 8i = 1
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More Iterative Sequential Algorithms

List contraction

A = an array containing n links of doubly linked lists
for i = 0 to n − 1

A[i ].next.previous = A[i ].previous
A[i ].previous.next = A[i ].next

Applications of:

length of lists or list ranking

size or number of cycles in a permutation

Euler tour, biconnectivity,..
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More Iterative Sequential Algorithms

List contraction

A = an array containing n links of doubly linked lists
for i = 0 to n − 1

A[i ].next.previous = A[i ].previous
A[i ].previous.next = A[i ].next

Iteration Depth [SGuBFG’15]: O(log n)
(w.h.p. for random ordering of A)
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More Iterative Sequential Algorithms

Sorting by insertion into a binary search tree (BST)

A = an array of keys

T = empty binary tree

for i = 1 to n
BST_insert(T ,A[i ])

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of A)

Overall Depth: O(log n)

Analysis requires
sub-iteration
dependences, otherwise
O(log2 n).

1 2 3 4 5

Sequential loops
within iterations

Iterations
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T = empty binary tree

for i = 1 to n
BST_insert(T ,A[i ])

Example:

7

4 9

1 5

insert(2), insert(8) – no dependence

insert(2), insert(3) – dependence
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More Iterative Sequential Algorithms

two-dimensional linear programming

Constraints (lines) C = c1, . . . , cn
p = (∞, 0)
for i = 1 to n

if p violates ci
p = min intersection of c1, . . . , ci−1 along ci

Total work: O(n) (w.h.p. for random ordering of C )

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C )

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)
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Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of C )

Overall Depth: O(log(n) log log(n))
(log log(n) term for min intersection)
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More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T )
replace t with new triangle(s) in T

Example:
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More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T )
replace t with new triangle(s) in T

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of P)

Analysis requires allowing subiterations to proceed independently.

1 2 3 4 5

Parallel loops
within iteration

Iterations
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More Iterative Sequential Algorithms

Delaunay triangulation

points P = p1, . . . , pn
T = {boundingTriangle of P}
for i = 1 to n

for t in conflictSet(pi ,T )
replace t with new triangle(s) in T

Iteration Depth [BGuSSu’16]: O(log n)
(w.h.p. for random ordering of P)

Parallel incremental Delaunay is widely used in practice, but it
was not previously known whether it is theoretically efficient.

SPAA/PODC 2017 Some Sequential Algorithms are Almost Always Parallel 16 / 35



More Iterative Sequential Algorithms

Graph Connectivity using union-find

graph G = (V ,E )
F = a union find data structure on V
for i = 1 to |E |

u = F.find(E [i ].u)
v = F.find(E [i ].v)
if (u 6= v) then F.union(u, v)

Iteration Depth: TDB (open problem)
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Some Sequential Algorithms

are Almost Always

Parallel
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��
��XXXXSome Many Sequential Algorithms

Iterative sequential algorithms such as:
Knuth shuffle, greedy MIS, greedy maximal matching,
list contraction, tree contraction, linear programming,
Delaunay triangulation

are Almost Always

Parallel
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Knuth shuffle, greedy MIS, greedy maximal matching,
list contraction, tree contraction, linear programming,
Delaunay triangulation

are Almost Always

For almost all input orders (i.e. whp over random order)
Or for almost all random choices (Knuth shuffle)

Parallel
Polylogarithmic dependence depth
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Why care?

Intellectual curiosity

Lots of work on parallel algorithms, but perhaps sequential
ones are already parallel

Application to parallel and distributed algorithms (Theory)

Surprisingly simple solutions to basic problems

Possible way to attack new problems

Theoretical justification to current practice

Application to parallel and distributed algorithms (Practice)

Fast and simple code

Generic techniques to parallelize code

Determinacy
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How to Analyze Dependence Depth
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Knuth Shuffle: Iteration Depth

for i = n − 1 downto 0
H[i] = rand({0, . . . , i})
swap(A[H[i]],A[i])

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =
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Knuth Shuffle: Iteration Depth

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =

0

1

72 4

5

3

6

Chosen locations

0 3

1

72 4

5

6

Actual dependences

0
31

7

2

45

6

Rearranged
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Knuth Shuffle: Iteration Depth

Adding one more, i.e., proof by induction

0 1 2 3 4 5 6 7i =

0 0 1 3 1 2 3 1H[i] =
8
?

0
31

7

2

45

6

Not including 8

0
31

7

2

45

6

8
8

8 8
8

8

8 8

8

5 2 4
7 1

6 3

8
0

Possible positions of 8

All equally likely, so equivalent to random BST.
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Maximal Independent Set, Bound on Depth

graph G = (V ,E ), S [1, . . . , n] = unknown, n = |V |
for i = 1 to n

if for any earlier neighbor vj of vi, S [j ] = in

then S [i ] = out else S [i ] = in

Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V ).

Proof outline.

Consider a vertex with degree larger than d (in residual graph) on
step i . The probability of selecting one of the neighbors on each
step j (≤ i) is at least d/n. The probability it survives all steps j is
therefore at most (1− d/n)i , leading to the result.
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for i = 1 to n
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Known results

Lexicographically first MIS is P-complete [Cook ’85]

O(log2 n) dependence depth for random graphs w.h.p.
[Coppersmith, Raghavan, Tompa ’89]

O(log n) depth for random graphs w.h.p. [Calkin, Frieze ’90]

O(log2 n) depth for arbitrary graph in random order

Many parallel algorithms (e.g. Luby).
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Definition (Residual graph on step i)
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Lemma (Degree)

After step i , the maximum degree in the residual graph is
O(n log n/i) w.h.p. (over orderings of V ).

For example:

For i = n/2 (half done), the max degree is O(log n) w.h.p.

Proof outline.
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Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…
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Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…

O(log n) O(log n) O(log n)

w.h.p. no path within a block is greater than O(log n)
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Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…

O(log n) O(log n) O(log n)

Proof outline: For each block i

Prob. of edge beween two iterations is at most 1
2i

(by Degree Lemma)

number of paths of length l is
(2i logn

l

)
By the union bound the prob. of any path of length l is at most(

1

2i

)l (
2i logn

l

)
<

(
1

2i

)l (
e2i log n

l

)l

=

(
e log n

l

)l

Therefore probability is very small that l > 2e log n.
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Maximal Independent Set, Bound on Depth

Consider increasing sized blocks of the iterations

log n 2 log n 4 log n
…

O(log n) O(log n) O(log n)

Summary

Since path within each block is O(log n), and number of blocks is
O(log n), total depth is O(log2 n).

Can be improved to O(log n log dmax) by picking blocks of size
2i dmax

n log n.
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Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of “rounds” each iteration can check if it has
any unresolved dependences.

Sufficient condition (true for all our examples):

1 Each i independently can identify active locations li , s.t.,

2 pending iterations in every prefix 0, . . . , i only update ∪j∈[i ]lj .
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In a constant number of “rounds” each iteration can check if it has
any unresolved dependences.

Sufficient condition (true for all our examples):

1 Each i independently can identify active locations li , s.t.,

2 pending iterations in every prefix 0, . . . , i only update ∪j∈[i ]lj .
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Concrete Algorithms and Implementation

Definition (Efficiently Checkable Dependences)

In a constant number of “rounds” each iteration can check if it has
any unresolved dependences.

Sufficient condition (true for all our examples):

1 Each i independently can identify active locations li , s.t.,

2 pending iterations in every prefix 0, . . . , i only update ∪j∈[i ]lj .

Suggests an implementation strategy:

While there are pending iterations:

reserve: in parallel pending iterations find active locations and
mark them

commit: in parallel each pending iteration runs, but aborts if it
depends on an active previous location
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Implication For Algorithms

Parallel (Priority PRAM)

Work Depth (Time)

MIS O(|E |) O(log2 |V | log ∆)
Maximal Matching O(|E |) O(log2 |V | log ∆)
BST Sort O(n log n) O(log n)
Knuth Shuffle O(n) O(log n log∗ n)
List Contraction O(n) O(log n log∗ n)
2d Linear Programming O(n) O(log n)
Delaunay triangulation O(n log n) O(log2 n)

All are work efficient. ∆ = maximum degree

Distributed (Congest model)

Rounds

MIS O(log |V | log ∆)
Maximal Matching O(log |V | log ∆)
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Implementation: Speculative For

struct step {

bool reserve(int i) {

reserves locations that will be written by iteration i}

bool commit(int i) {

checks locations iteration i depends on, and runs if safe}};

speculative_for(Step(..), 0, n); // 0, . . . , n = range of iterations

speculative for will repeat the following until done:

picks a prefix of remaining (pending) iterations

in parallel runs the reserve on the prefix

in parallel runs the commit on the prefix

removes completed iterations (commit returns 1)

Can dynamically choose size of prefix.
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Knuth Shuffle Code

struct knuth_step {

bool reserve(int i) {

write_min(R[i], i); write_min(R[H[i]], i);

return 1; }

bool commit (int i) {

int h = H[i];

if(R[H[i]] == i) {

if(R[i] == i) {swap(A[i],A[H[i]]); R[i] = inf; return 1;}

R[H[i]] = inf;}

return 0; }

};

speculative_for(knuth_step(..), 0, n);
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MIS Code

struct mis_step {

bool reserve(int i) {

flag = In;

for (int j = 0; j < G[i].degree; j++) {

int ngh = G[i].Neighbors[j];

if (ngh < i) {

if (S[ngh] == In) { flag = Out; return 1;}

else if (S[ngh] == Unknown) flag = Unknown; }}

return 1;}

bool commit(int i) { return (S[i] = flag) != Unknown;}

};

speculative_for(mis_step(..), 0, n);
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Spanning Tree Code

struct union_find_step {

bool reserve(int i) {

u = UF.find(E[i].u);

v = UF.find(E[i].v);

if (u > v) swap(u,v);

if (u != v) { write_min(R[v], i); return 1;

} else return 0; }

bool commit(int i) {

if (R[v] == i) { UF.link(v, u); return 1; }

else return 0; }

};

speculative_for(union_find_step(..), 0, m);
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Timings on a 64-core Xeon Phi

tseq = best sequential algorithm
t1 = time on one core
t64 = time on all cores
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End Matter

Conclusions

1 Many sequential algorithms are “inherently” parallel, at least
when randomly ordering.

Perhaps should be thinking of algorithms more abstractly in
terms of their dependence graph instead of specific model.

2 Can often take advantage of the parallelism using reservations

3 Resulting code is simple, fast, and deterministic

Open Questions

1 Depth of MIS

2 Resolving dependences in a more general context.
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