Big Data on Smallish Machines

Guy Blelloch
with: Dan Blandford, Aapo Kyrola, Julian Shun

Carnegie Mellon
Question

• There has been a lot of emphasis on large clusters, and tools such as Map Reduce for “big data”

• But, when might it be better to use a smaller machine such as a laptop, desktop, or rack mounted multi-core server?

• Potential advantages
 – (much) More energy efficient
 – More cost effective
 – Easier to program, especially for general purpose
 – Easier to administer, more reliable
Why use Large Clusters

1. Data does not fit in memory of modest machines
2. Modest machines are not fast enough to process the data.
BIG Data

Sloan Sky Survey: 7 x 10^{13} bytes/year now
 7 x 10^{15} bytes/year in 2016

Large Hadron Collider:
 150 million sensors x 40 million samples/sec
 = 6 x 10^{16} samples/year

Wallmart Database: 2.5*1015 bytes (predicted)
 10 Billion Transactions/year

YouTube: 1.2 x 108 videos x 2 x 107 mbytes/video
 = 3 x 10^{15} bytes

Genome: 4 x 109 bp/human x 4 x 109 humans = 1019 bytes

But most analysis does not have to look at all the data
Large Data (Graphs)

• Web graph (centered around Wikipedia)
Large Data (Graphs)

<table>
<thead>
<tr>
<th>Publicly Available</th>
<th>Edges</th>
<th>Uncompressed</th>
<th>Compressed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 Billion</td>
<td>60 GB</td>
<td>6 GB</td>
</tr>
<tr>
<td>Twitter</td>
<td>25 Billion</td>
<td>250 GB</td>
<td>25 GB</td>
</tr>
<tr>
<td>Facebook</td>
<td>140 Billion</td>
<td>1.4 TB</td>
<td>140 GB</td>
</tr>
<tr>
<td>Web Graph (usefull)</td>
<td>200 Billion?</td>
<td>2 TB</td>
<td>200 Gbytes</td>
</tr>
</tbody>
</table>

![Graph Example](image-url)
Large Text

• Jstor : 2 Million Docs – 100Gbytes
• PubMed 20 Million Docs – 100Gbytes
• Library of congress: 3×10^7 volumes $\times 10^5$ /vol
 1 TB (compressed)

* All numbers estimated
Machines

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Main Memory</th>
<th>Secondary Memory</th>
<th>Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop</td>
<td>$1K</td>
<td>10 GB</td>
<td>1 TB</td>
<td>4</td>
</tr>
<tr>
<td>Desktop</td>
<td>$4K</td>
<td>100 GB</td>
<td>10 TB</td>
<td>16</td>
</tr>
<tr>
<td>Server</td>
<td>$20K</td>
<td>1 TB</td>
<td>100 TB</td>
<td>64</td>
</tr>
<tr>
<td>100 node Cluster</td>
<td>$200K</td>
<td>10 TB</td>
<td>1000 TB</td>
<td>800</td>
</tr>
</tbody>
</table>
Machines

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Main Memory</th>
<th>Secondary Memory</th>
<th>Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop</td>
<td>$1K</td>
<td>10 GB</td>
<td>1 TB</td>
<td>4</td>
</tr>
<tr>
<td>Desktop</td>
<td>$4K</td>
<td>100 GB</td>
<td>10 TB</td>
<td>16</td>
</tr>
<tr>
<td>Server</td>
<td>$20K</td>
<td>1 TB</td>
<td>100 TB</td>
<td>64</td>
</tr>
<tr>
<td>100 node Cluster</td>
<td>$200K</td>
<td>10 TB</td>
<td>1000 TB</td>
<td>800</td>
</tr>
</tbody>
</table>

Twitter Graph : 250 Gbytes
Machines

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Main Memory</th>
<th>Secondary Memory</th>
<th>Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop</td>
<td>$1K</td>
<td>10 GB</td>
<td>1 TB</td>
<td>4</td>
</tr>
<tr>
<td>Desktop</td>
<td>$4K</td>
<td>100 GB</td>
<td>10 TB</td>
<td>16</td>
</tr>
<tr>
<td>Server</td>
<td>$20K</td>
<td>1 TB</td>
<td>100 TB</td>
<td>64</td>
</tr>
<tr>
<td>100 node Cluster</td>
<td>$200K</td>
<td>10 TB</td>
<td>1000 TB</td>
<td>800</td>
</tr>
</tbody>
</table>

Twitter Graph: 250 Gbytes
Compressed Twitter Graph: 25 Gbytes
In This Talk

1. Why shared memory.
 Nested Parallelism, nested data structures

2. Graph and Text analysis using multi-core servers (LIGRA, with Julian Shun, PPOPP ‘13)

3. Graph analysis using a laptops and disks (GraphChi, with Aapo Kyrola, OSDI ’12)

4. In memory compression of graphs, and inverted indices (with Daniel Blandford, SODA ‘04)
Why Shared Memory

General Purpose
• Nested parallelism
• Pipelined parallelism
• Pointer-based structures
 – Various trees, hypergraphs, combinations of trees and graphs,
• Large knowledge-base of algorithms
• Simple cost models
• All reasonably easy
Parallel Quicksort

function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e == a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1];
Quicksort Complexity

Computational DAG

\[\text{Span} = O(\lg^2 n) \]

\[\text{Work} = O(n \log n) \]

\[Q_1 = O\left(\frac{n}{B \log \left(\frac{n}{M}\right)}\right) \]

Complexities are w.h.p.
Classification and Regression Trees

function CART(D) =
if done(D) then D
else let
 e = {condEntropy({d[i],d[n] : d in D} : i in [0:n]};
 P = split(D,min_index(e));
in TreeNode({CART(p) : p in P},i);

Other Tree Based Codes:
• proximity problems : nearest neighbors, metric trees
• Kernel density estimation
• Gaussian process regression
• n-point correlation
Cover Trees

C_∞

C_{j+1}

C_j

C_{j-1}

$C_{-\infty}$

1

11

1

2 3 4 5

6 3 10 4 8

7 2 4 9

2/6/15 Simons 2013
Suffix Trees

24x speedup on 40 cores over best sequential
• consists of many components of different types
In This Talk

1. Why shared memory
 Nested Parallelism, nested data structures

2. Graph and Text analysis using multi-core servers (LIGRA, with Julian Shun, PPOPP ‘13)

3. Graph analysis using a laptops and disks (GraphChi, with Aapo Kyrola, OSDI ’12)

4. In memory compression of graphs, and inverted indices (with Daniel Blandford, SODA ‘04)
Ligra

• Lightweight graph processing system for shared memory multicore machines
 – Lightweight: modest amount of code (about 1500 lines including comments)
 – Simple: framework only has 2 routines and one data structure
 • This is enough for a wide class of graph traversal algorithms!
 – Parallel: designed for shared memory systems
 – Efficient: outperform most other graph systems by orders of magnitude, up to 39x speedup on 40 cores
Ligra Interface

• **Vertex subset**: represents a subset of vertices
 – Important for algorithms that process only a subset of vertices each iteration
 – Can keep around multiple subsets for same graph
 – Can use one subset for multiple graphs

• **Vertex map**: maps user boolean function over vertex subset

• **Edge map**: maps user boolean function over out-edges of vertex subset
Parallel Breadth First Search (BFS)
Breadth-first search in Ligra

parents = {-1, ..., -1}; // -1 indicates “unvisited”

procedure **UPDATE** (s, d):
 return compare_and_swap(parents[d], -1, s);

procedure **COND** (i):
 return parents[i] == -1; // checks if “unvisited”

procedure **BFS** (G, r):
 parents[r] = r;
 frontier = {r};
 while (size(frontier) > 0):
 frontier = **EDGEMAP** (G, frontier, **UPDATE**, **COND**);
Two methods for BFS

Idea due to Beamer, Asanovic and Patterson (2012):

- 1^{st} (Sparse) method better for small frontiers
- 2^{nd} (Dense) method better when frontier is large and many vertices have been visited
- Switch between the two approaches based on frontier size
Comparison to other systems

<table>
<thead>
<tr>
<th>Ligra</th>
<th>Pregel/GPS/Giraph</th>
<th>GraphLab/PowerGraph/Grace</th>
<th>Pegasus (MapReduce)/Knowledge Discovery Toolbox (KDT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared memory</td>
<td>Distributed memory</td>
<td>Shared/ Distributed</td>
<td>Distributed memory</td>
</tr>
<tr>
<td>Synchronous</td>
<td>Synchronous</td>
<td>Asynchronous</td>
<td>Synchronous</td>
</tr>
<tr>
<td>Vertex subsets</td>
<td>Vertex operations</td>
<td>Vertex operations</td>
<td>Matrix-vector operations</td>
</tr>
<tr>
<td>Vertex map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge map</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiments

- Used a variety of artificial and real-world graphs
 - Largest is Yahoo web graph with 1.4 billion vertices and 6.6 billion edges
- Implementations in Cilk Plus (extension to C++), 1500 lines of code for the system
- Using 40-core Intel Nehalem based machine
- Good speedup, up to 39x (PageRank)
Comparison to other graph processing systems

<table>
<thead>
<tr>
<th></th>
<th>Ligra: 40 core Performance</th>
<th>vs.</th>
<th>Machines</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth first search</td>
<td>2.5B edges/sec</td>
<td>KDT</td>
<td>64 x 4 core Intel Nehalem</td>
<td>473M edges/sec</td>
</tr>
<tr>
<td>Approximate betweenness centrality</td>
<td>526M edges/sec</td>
<td>KDT</td>
<td>24 x 12 core AMD Opteron processors</td>
<td>125M edges/sec</td>
</tr>
<tr>
<td>Page Rank (15 lines of code)</td>
<td>2.91 sec/iteration for 1.5B edge Twitter graph</td>
<td>Powergraph</td>
<td>8 x 64-core machines</td>
<td>3.6 sec/iteration* for 1.5B edge Twitter graph</td>
</tr>
<tr>
<td>Shortest Paths</td>
<td>1.68B edges in under 2 seconds</td>
<td>Pregel</td>
<td>300 multicore commodity PCs</td>
<td>1B edges in 20 seconds</td>
</tr>
</tbody>
</table>

Hadoop: 198sec, Sparc: 97.4sec, Twister 36sec
Ligra - Conclusions

• **Lightweight**: framework is only about 1500 lines of code including comments

• **Simple**: Leads to simple implementations of graph traversal algorithms
 – Abstract main components of graph traversal algorithms into two functions

• **Efficient**: Up to orders of magnitude faster than those of other graph processing systems
 – Not much slower than highly-optimized application-specific code
Ligra - Conclusions

• **Limitations:**
 – Does not work well with dynamic graphs
 – Not for asynchronous computations

• **Future work:**
 – Address limitations
 – Extending to GPUs
In This Talk

1. Nested Parallelism, nested data structures Why shared memory
2. Graph and Text analysis using multi-core servers (LIGRA, with Julian Shun, PPOPP ‘13)
3. Graph analysis using a laptops and disks (GraphChi, with Aapo Kyrola, OSDI ’12)
4. In memory compression of graphs, and inverted indices (with Daniel Blandford, SODA ‘04)
Disk-Based Graph Algorithms

Main Challenge: Random Access

- 5ms Disk, .05ms SSD, .0001ms memory

GraphChi Solution: Parallel Sliding Windows, based on Graphlab-like interface (vertex centric)
PSW: Layout

Shard: in-edges for interval of vertices; sorted by source-id

Shards small enough to fit in memory; balance size of shards
PSW: Loading Sub-graph

Load subgraph for vertices 1..100

Vertices 1..100
Vertices 101..700
Vertices 701..1000
Vertices 1001..10000

What about out-edges?
Arranged in sequence in other shards

Load all in-edges in memory

in-edges for vertices 1..100 sorted by source_id
PSW: Loading Sub-graph

Load subgraph for vertices 101..700

Vertices 1..100
- Shard 1

Vertices 101..700
- Shard 2

Vertices 701..1000
- Shard 3

Vertices 1001..10000
- Shard 4

Load all in-edges in memory

Out-edge blocks in memory

2/6/15

Simons 2013
GraphChi

- C++ implementation: 8,000 lines of code
 - Java-implementation also available (~ 2-3x slower), with a Scala API.
- Several optimizations to PSW (see paper).

Source code and examples:
http://graphchi.org
Evaluation: Is PSW expressive enough?

Graph Mining
- Connected components
- Approx. shortest paths
- Triangle counting
- Community Detection

SpMV
- PageRank
- Generic

Recommendations
- Random walks

Collaborative Filtering (by Danny Bickson)
- ALS
- SGD
- Sparse-ALS
- SVD, SVD++
- Item-CF

 many more

Probabilistic Graphical Models
- Belief Propagation

Algorithms implemented for GraphChi (Oct 2012)
Experiment Setting

• Mac Mini (Apple Inc.)
 – 8 GB RAM
 – 256 GB SSD, 1TB hard drive
 – Intel Core i5, 2.5 GHz

• Experiment graphs:

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
<th>P (shards)</th>
<th>Preprocessing</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal</td>
<td>4.8M</td>
<td>69M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>netflix</td>
<td>0.5M</td>
<td>99M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>42M</td>
<td>1.5B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>uk-2007-05</td>
<td>106M</td>
<td>3.7B</td>
<td>40</td>
<td>31 min</td>
</tr>
<tr>
<td>uk-union</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
</tbody>
</table>
PowerGraph Comparison

• **PowerGraph / GraphLab 2** outperforms previous systems by a wide margin on natural graphs.

• With 64 more machines, 512 more CPUs:
 – **Pagerank**: 40x faster than GraphChi
 – **Triangle counting**: 30x faster than GraphChi.

GraphChi has state-of-the-art performance / CPU.
Hybrid Approach

Possible approach for graphs with metadata:
- Use a server with e.g. 1 TB mem, 100TB Disk
- In memory for main graph
- Disk for meta data
In This Talk

1. Nested Parallelism, nested data structures
 Why shared memory
2. Graph and Text analysis using multi-core servers (LIGRA, with Julian Shun, PPOPP ’13)
3. Graph analysis using a laptops and disks (GraphChi, with Aapo Kyrola, OSDI ’12)
4. In memory compression of graphs, and inverted indices (with Daniel Blandford, SODA ‘04)
Compressing Graphs

• **Goal**: To represent large graphs compactly while supporting queries efficiently
 – e.g., adjacency and neighbor queries
 – want to do significantly better than adjacency lists
 (e.g. a factor of 10 less space, about the same time)

• **Main idea**:
 – Renumber vertices using separators
 – Difference encode the edges
Renumbering with Edge Separators
Renumbering with Edge Separators
Renumbering with Edge Separators

[Diagram of a network with edge separators highlighted]
Renumbering with Edge Separators
Compressed Adjacency Tables

Theorem: If $O(n^c)$, $c < 1$ separators, guarantees $O(n)$ total bits.

<table>
<thead>
<tr>
<th>#</th>
<th>D</th>
<th>Neighbors</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0 2 3</td>
<td>-1 2 1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1 3 4</td>
<td>-1 2 1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1 2 4 5</td>
<td>-1 1 2 1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2 3 5 6</td>
<td>-2 1 2 1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3 4 6 7</td>
<td>-2 1 2 1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4 5 8</td>
<td>-2 1 3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5 8</td>
<td>-2 3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>6 7</td>
<td>-2 1</td>
</tr>
</tbody>
</table>
Bits per edge for various graphs

<table>
<thead>
<tr>
<th></th>
<th>dfs</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_d</td>
<td>Space</td>
<td>T/T_d</td>
<td>Space</td>
<td>T/T_d</td>
<td>Space</td>
<td>T/T_d</td>
</tr>
<tr>
<td>auto</td>
<td>0.79</td>
<td>9.88</td>
<td>153.11</td>
<td>5.17</td>
<td>7.54</td>
<td>5.90</td>
<td>14.59</td>
</tr>
<tr>
<td>feocean</td>
<td>0.06</td>
<td>13.88</td>
<td>388.83</td>
<td>7.66</td>
<td>17.16</td>
<td>8.45</td>
<td>34.83</td>
</tr>
<tr>
<td>m14b</td>
<td>0.31</td>
<td>10.65</td>
<td>181.41</td>
<td>4.81</td>
<td>8.16</td>
<td>5.45</td>
<td>15.32</td>
</tr>
<tr>
<td>ibm17</td>
<td>0.44</td>
<td>13.01</td>
<td>136.43</td>
<td>6.18</td>
<td>11.0</td>
<td>6.79</td>
<td>20.25</td>
</tr>
<tr>
<td>ibm18</td>
<td>0.48</td>
<td>11.88</td>
<td>129.22</td>
<td>5.72</td>
<td>9.5</td>
<td>6.24</td>
<td>17.29</td>
</tr>
<tr>
<td>CA</td>
<td>0.76</td>
<td>8.41</td>
<td>382.67</td>
<td>4.38</td>
<td>14.61</td>
<td>4.90</td>
<td>35.21</td>
</tr>
<tr>
<td>PA</td>
<td>0.43</td>
<td>8.47</td>
<td>364.06</td>
<td>4.45</td>
<td>13.95</td>
<td>4.98</td>
<td>33.02</td>
</tr>
<tr>
<td>googleI</td>
<td>1.4</td>
<td>7.44</td>
<td>186.91</td>
<td>4.08</td>
<td>12.71</td>
<td>4.18</td>
<td>40.96</td>
</tr>
<tr>
<td>googleO</td>
<td>1.4</td>
<td>11.03</td>
<td>186.91</td>
<td>6.78</td>
<td>12.71</td>
<td>6.21</td>
<td>40.96</td>
</tr>
<tr>
<td>lucent</td>
<td>0.04</td>
<td>7.56</td>
<td>390.75</td>
<td>5.52</td>
<td>19.5</td>
<td>5.54</td>
<td>45.75</td>
</tr>
<tr>
<td>scan</td>
<td>0.12</td>
<td>8.00</td>
<td>280.25</td>
<td>5.94</td>
<td>23.33</td>
<td>5.76</td>
<td>81.75</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>10.02</td>
<td>252.78</td>
<td>5.52</td>
<td>13.66</td>
<td>5.86</td>
<td>34.54</td>
</tr>
</tbody>
</table>
Conclusions

• For many applications of “large data”, data can fit in the memory of a server or disk of a laptop.
• Speed can be improved on a single multicore server over a distributed system, and significantly more energy efficient.
• Code can be simpler and more general.
• Disk algorithms are likely the most energy efficient, so good for high bandwidth embarassigly parallel applications.
Thank you!
Performance: Overall

<table>
<thead>
<tr>
<th>Graph</th>
<th>Array</th>
<th></th>
<th></th>
<th>bu-cf/semi</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time</td>
<td>space</td>
<td>time</td>
<td>space</td>
<td>time</td>
<td>space</td>
</tr>
<tr>
<td>auto</td>
<td>0.24</td>
<td>34.2</td>
<td>0.61</td>
<td>66.2</td>
<td>0.51</td>
<td>7.17</td>
</tr>
<tr>
<td>feocean</td>
<td>0.04</td>
<td>37.6</td>
<td>0.08</td>
<td>69.6</td>
<td>0.09</td>
<td>11.75</td>
</tr>
<tr>
<td>m14b</td>
<td>0.11</td>
<td>34.1</td>
<td>0.29</td>
<td>66.1</td>
<td>0.24</td>
<td>6.70</td>
</tr>
<tr>
<td>ibm17</td>
<td>0.15</td>
<td>33.3</td>
<td>0.40</td>
<td>65.3</td>
<td>0.34</td>
<td>7.72</td>
</tr>
<tr>
<td>ibm18</td>
<td>0.14</td>
<td>33.5</td>
<td>0.38</td>
<td>65.5</td>
<td>0.32</td>
<td>7.33</td>
</tr>
<tr>
<td>CA</td>
<td>0.34</td>
<td>43.4</td>
<td>0.56</td>
<td>75.4</td>
<td>0.58</td>
<td>11.66</td>
</tr>
<tr>
<td>PA</td>
<td>0.19</td>
<td>43.3</td>
<td>0.31</td>
<td>75.3</td>
<td>0.32</td>
<td>11.68</td>
</tr>
<tr>
<td>googleI</td>
<td>0.24</td>
<td>37.7</td>
<td>0.49</td>
<td>69.7</td>
<td>0.45</td>
<td>7.86</td>
</tr>
<tr>
<td>googleO</td>
<td>0.24</td>
<td>37.7</td>
<td>0.50</td>
<td>69.7</td>
<td>0.51</td>
<td>9.90</td>
</tr>
<tr>
<td>lucent</td>
<td>0.02</td>
<td>42.0</td>
<td>0.04</td>
<td>74.0</td>
<td>0.05</td>
<td>11.87</td>
</tr>
<tr>
<td>scan</td>
<td>0.04</td>
<td>43.4</td>
<td>0.06</td>
<td>75.4</td>
<td>0.08</td>
<td>12.85</td>
</tr>
</tbody>
</table>

Time is for one DFS