
15-12315-123

Systems Skills in C and Unix

About the courseAbout the course

Effective Programming in C and

UNIX
All Semesters: 9 units

� This course is designed to provide a substantial exposure to the C programming
language and the Unix programming environment for students with some prior
programming experience but minimal exposure to C.

� Features of the C language that are emphasized
� arrays, structs and unions, dynamic memory allocation (malloc and free), pointers, pointer

arithmetic, and casting.

� Data structures that are emphasized� Data structures that are emphasized
� dynamic lists and hash tables.

� Algorithmic efficiency is emphasized
� Space and time complexity

� Students will develop a sense of proper programming style in the C idiom

� be exposed to cross-platform portability issues.

� learn to use tools such as emacs/vi, make, gdb to assist them in the design,
testing and debugging programs. learn about regular expressions and will be
able to use scripting languages such as Perl and Shell scripting

� This course serves as the prerequisite for 15-213.

Prerequisites: 15-110

Course material
Primary Course Text Books:
All course textbooks are optional. Lecture notes are available from
(1) http://www.cs.cmu.edu/~guna/15-123S10/lectures

(2) C Programming Language (2nd Edition) by Brian W. Kernighan (Author), Dennis
Ritchie (Author)

Other Recommended Text Books are:
(3) "C for Java Programmers" by Thomasz Muldner" ISBN: 0-201-70279-7 - Addison(3) "C for Java Programmers" by Thomasz Muldner" ISBN: 0-201-70279-7 - Addison
Wesley Longman 2000

(4) ANSI C on UNIX by Paul Wang http://www.sofpower.com/pub_bk01.html

(5) Learning Perl, Fourth Edition by Randal L. Schwartz, Tom Phoenix, brian d foy
Fourth Edition July 2005 http://www.oreilly.com/catalog/learnperl4/

(6) The UNIX programming Environment by Kernighan and Pike
http://cm.bell-labs.com/cm/cs/upe/

Course Components
� 8 programming labs – 40%

� skills labs – 7%

� Quizzes or Salons – 10%

� Written midterm – 10%

� C programming midterm – 7%� C programming midterm – 7%

� Script programming midterm – 5%

� Final Exam – 20%

� TA points – 1%

Course Objectives
� At the end of this course

� You should be able to write fairly sophisticated C
programs

� You should have a good understanding of program
verification, debugging (tools and process)

� You should have a good understanding of machine � You should have a good understanding of machine
memory model and how programs work

� You should be able to write useful scripts using
languages such as perl and bash

� You will have some understanding of how assembler s
work

� You should be prepared to go into 15-213

Course Staff
� Professor Guna (http://www.cs.cmu.edu/~guna)

� Gates 6005, office hrs – T, TR 10:30-12:00 or by
appointment, or anytime my door is open

� Course Assistants
� Section A

� TBA� TBA

� Section E
� Emily Grove

� Section F
� Kee Young Lee

� Section G
� Sylvia Han

How your time should be divided
� This is how you should spend your time on any week (9

units)
� Attending lecture

� 3 hours

� Recitation
� 1 hour

� Homework and Coding � Homework and Coding
� 5 hours

� Disclaimer
� It is hard to predict how long it will take you to finish your

programming assignment

� Talk to the course staff, if it is taking an unusually long time
(20 hour /week)

� We will be tracking this time as part of the assignment

Important
� Start assignments early – C programming can be very time

consuming
� Assignments are individual, do not ask others to write code or

copy others code w/o permission

� Sample code given in class can be used in any assignment

� Read notes and annotated notesRead notes and annotated notes

� Do homework
� Not graded

� Attend lectures and recitations
� DO NOT use laptops other than to take notes in class or write

code

� Any other activity is prohibited

� Seek help early and often

Testing your prior knowledgeTesting your prior knowledge

What is a function?
� A mathematical notion is that a function takes a given

set of inputs and produces one and only one output
� Hence for the same set of inputs it must always produce

the same output

� Functions can be used in programming to
� Divide and conquer� Divide and conquer

� Promote modularity

� Unit testing

� proof of correctness of the algorithm

� Functions have overhead
� Change in execution path

� Runtime stack use

What is the purpose of the following function?

int f(int n) {

int i = 0, k = 0;

while (k <= n) {

k += i*2 + 1;

i++;

}

return i-1;

}

� Write down the assumptions you make about this
function

What is a Loop?
� A programming constructs that allows one to repeat a

task

� What are the types of loops you know? When do you
use them?

� Does a loop always ends? Give an example where a
loop does not end.

� Does a loop always execute once? Give an example,
where a loop may never execute.

for loop syntax (revisited)

for (initializations; exit condition; change)

{

/* loop_ body *//* loop_ body */

}

while loop syntax (new)

while (condition(s))

{

/* loop body */

v Initialize conditions

/* loop body */

}
v

Loop condition
changes

When loops go wrong

Loop invariant
� A loop invariant is a boolean variable that is true

before, during and just after execution of the loop

� Example: What would be a loop invariant for

Proving the Loop invariance

Check the loop invariant

� Is it true just before loop execution?

� Does it hold during the execution of the loop?

� Is it true just after the execution of the loop

� What are pre and post conditions for this function?

What are Strings?
� String is an array of characters

� Characters come from ASCII (8-bit) or Unicode (16-
bit) tables

� Memory is a big long String of bytes

� In Java� In Java

� Strings are objects with their own attributes and
operations (methods)

� Strings are immutable

� Strings are very common in many applications

� In C Strings are not objects and is a byte array of
characters ending with NULL character ‘\0’

What are boolean variables?
� Boolean variables only takes values TRUE or FALSE

� C does not have boolean as a type
� Use o for false and 1 for true

� Technically we can use a byte to store things

� The condition in an if statement is a boolean variable

� Boolean variables can be combined using� Boolean variables can be combined using
� Logical AND (&&)

� Logical OR (||)

� Logical NOT (!)

� Properties
� NOT (A and B) = NOT (A) or NOT(B)

� NOT (A or B) = NOT (A) and NOT(B)
� Prove these identities

Logic Tables

Source: mathworks

Prove !(A && B) = !A || !B

Homework:

prove

!(A || B) = !A && !B!(A || B) = !A && !B

Understanding UNIXUnderstanding UNIX

Operating Systems

Unix Operating System
� Began at AT & T in 1970’s

� Free source code for certain groups

� Many versions of unix

� Linux version

� Unix “like” system� Unix “like” system

� Free and open source

� Collaborative development

� Small kernel

Unix system shell

Accessing unix
� http://www.cmu.edu/myandrew

� Download and install SSH secure shell

� SSH

� Provides access to unix.andrew.cmu.edu machines

� Using a shell we can perform various tasks

� mkdir, cp, quota, mv, …..

� We develop and test our C and perl programs

� We write shell scripts to make life easy

What is C?
� A general purpose programming language

� Developed in 1972 at AT &T for use with unix

� One of most popular programming languages

� High level procedural programming

Direct Access to low memory� Direct Access to low memory

� C++ is the object oriented extension to C

� Popular in industry

� STL

Why learn C?
� Good

� Flexibility

� Efficiency

� Low level access to memory

� Caution� Caution

� Low level access to memory

� Memory access violations (buffer overflows)

� Hard to debug C code

� Use a debugger such as gdb

� Platform dependent

Life of a C program

#include <stdio.h>

int main(int argc, char* argv[]) {

printf(“hello world\n”);

return 0;return 0;

}

Life of a C program

preprocessor C compiler Assembler
Hello.c Hello.i Hello.s

Hello.o

Linkerexecutable

Hello

How programs get executed

Main

registers ALU

I/O bridge
Main

memory

I/O Bus

USB
controller

Graphics
Adapter

Disk
controller

HD

Bus interface

Program Development Process
� Editing

� The process of creating the source code

� Compiling
� The process of translating source code to object code

� Linking
� The process of linking all libraries and other object codes to

generate the executable codegenerate the executable code

� Executing
� The process of running the program executable

� Testing/Debugging
� The process of making sure program does what it is supposed

to do
� Consider all “edge” cases and make sure code does not break

for some inputs

The C compiler – gcc
� GNU C compiler

� Compiles, assemble and produce executable code

� Also can compile
� C++, Modula-3, FORTRAN, Objective-C, …

� ExamplesExamples
� gcc hello.c � a.out

� gcc –c hello.c � hello.o

� gcc -S hello.c � hello.s

� Using various flags
� gcc –std=c99 hello.c

� gcc –Wall –pedantic –ansi –O2 program.c

ANSI C
� Standard published by

� American National Standards institute for C language

� Some ANSI features

Do not mix data and code� Do not mix data and code

� Do not use functions that are not part of the standard
libraries

Moving from Java to C
� From object oriented thinking to procedural thinking

� From classes and methods to functions/procedures

� From object oriented decomposition to procedural
decomposition

� From a relatively “safe” high level language to fairly low level
“unsafe” language

� From no direct access to memory (Java) to direct manipulation � From no direct access to memory (Java) to direct manipulation
of memory.

� Automatic garbage collection to no garbage collection (clean up)

Code ExamplesCode Examples

Data RepresentationsData Representations

Data representations
� int x = 15;

� Decimal representation of 15

� int x = 0x0F;
� Hexadecimal (base-16) representation of 15

� 15 = 0000 … 0000 1111 � 15 = 0000 … 0000 1111
� Binary representation of 15

� Typically integers are 32-bits
� Most significant bit is the sign bit (1-negative, 0-positive)

� What is the largest signed integer that can be represented by
32-bits?

� What is the largest unsigned int?

� More about this in skills lab 1 and in lecture 02

Things to do before next class
� Take the background survey from Bb->course

information

� Login to salon and complete the prior knowledge
assignment

� After you complete, go back to assignment view mode � After you complete, go back to assignment view mode
and select up to 3 responses that you like from global
questions

� Make your self familiar with course websites

� Bb and http://www.cs.cmu.edu/~guna/15-123S11

� Go to recitation tomorrow

Next: more on Representation of

datadata

