Systems Skills in C and Unix

e

About the course

All Semesters: 9 units

This course is designed to provide a substantial exposure to the C programming
language and the Unix programming environment for students with some prior
programming experience but minimal exposure to C.

Features of the C language that are emphasized

e arrays, structs and unions, dynamic memory allocation (malloc and free), pointers, pointer
arithmetic, and casting.

Data structures that are emphasized
e dynamic lists and hash tables.

Algorithmic efficiency is emphasized

e Space and time complexity
Students will develop a sense of proper programming style in the C idiom
be exposed to cross-platform portability issues.

learn to use tools such as emacs/vi, make, gdb to assist them in the design,
testing and debugging programs. learn about regular expressions and will be
able to use scripting languages such as Perl and Shell scripting

This course serves as the prerequisite for 15-213.

Prerequisites: 15-110

ourse material

Primary Course Text Books:
All course textbooks are optional. Lecture notes are available from
(1) http://www.cs.cmu.edu/~guna/i15-123510/lectures

(2) C Programming Language (2nd Edition) by Brian W. Kernighan (Author), Dennis
Ritchie (Author

Other Recommended Text Books are:
(3) "C for Java Programmers" by Thomasz Muldner” ISBN: 0-201-70279-7 - Addison
Wesley Longman 2000

(4) ANSI C on UNIX by Paul Wang http://www.sofpower.com/pub_bko1.html

(5) Learning Perl, Fourth Edition by Randal L. Schwartz, Tom Phoenix, brian d foy
Fourth Edition July 2005 http://www.oreilly.com/catalog/learnperls/

(6) The UNIX programming Environment by Kernighan and Pike
http://cm.bell-labs.com/cm/cs/upe/

! ourse Components

* 8 programming labs - 40%

e skills labs - 7%

® Quizzes or Salons - 10%

* Written midterm - 10%

¢ C programming midterm - 7%

* Script programming midterm — 5%
* Final Exam - 20%

* TA points - 1%

ourse Objectives

e At the end of this course

e You should be able to write fairly sophisticated C
programs

e You should have a good understanding of program
verification, debugging (tools and process)

* You should have a good understanding of machine
memory model and how programs work

* You should be able to write useful scripts using
languages such as perl and bash

e You will have some understanding of how assembler s
work

e You should be prepared to go into 15-213

rse Staf

* Professor Guna ()

e Gates 60035, office hrs — T, TR 10:30-12:00 or by
appointment, or anytime my door is open

* Course Assistants
e Section A
- TBA
e Section E
« Emily Grove
e Section F
» Kee Young Lee

e Section G
 Sylvia Han

ow your time should be divided

* This is how you should spend your time on any week (9
units)
e Attending lecture
e 3 hours

e Recitation
e 1hour

e Homework and Coding
e 5hours
* Disclaimer

e [tis hard to predict how long it will take you to finish your
programming assignment

e Talk to the course staff, if it is taking an unusually long time
(20 hour /week)

e We will be tracking this time as part of the assignment

mportant

e Start assignments early — C programming can be very time
consuming

e Assignments are individual, do not ask others to write code or
copy others code w/o permission

e Sample code given in class can be used in any assignment
* Read notes and annotated notes
* Do homework

e Not graded
* Attend lectures and recitations

e DO NOT use laptops other than to take notes in class or write
code

e Any other activity is prohibited
* Seek help early and often

Testing your prior knowledge

at is a function:

* A mathematical notion is that a function takes a given
set of inputs and produces one and only one output

e Hence for the same set of inputs it must always produce
the same output

* Functions can be used in programming to
e Divide and conquer
e Promote modularity
e Unit testing
e proof of correctness of the algorithm
* Functions have overhead
e Change in execution path
e Runtime stack use

hat is the purpose of the following function?

int f(int n) {
inti=o0, k=o0;

while (k <=n) {

k +=1i*2 +1;
1++;
return i-1;

J

* Write down the assumptions you make about this
function

hat is a Loop?
* A programming constructs that allows one to repeat a

task

* What are the types of loops you know? When do you
use them?

* Does a loop always ends? Give an example where a

loop does not end.

* Does a loop always execute once? Give an example,
where a loop may never execute.

“for loop syntax (revisited)

for (initializations; exit condition; change)

{
/* loop_ body */

SEE s =

——
while (condition(s))

{

Initialize conditions

/* loop body */
———

Loop condition
changes

When loops go wrong

int pdt =1;
for (int i=0; i<=32; i++)
pdt *= 2:

System.out.printin{pdt});

00p Invariant

* A loop invariant is a boolean variable that is true
before, during and just after execution of the loop

* Example: What would be a loop invariant for

int foo(int n) {
inti=o, k=o;
while (k <=n) {
k+=1*2 +1;
I+
}

return i-1;

roving the Loop invariance

w:;jle (k <=n) {

k1t i 51+
L
return i-1;

Check the loop invariant
e Isit true just before loop execution?
e Does it hold during the execution of the loop?
e Isit true just after the execution of the loop

* What are pre and post conditions for this function?

hat are Strings?

* String is an array of characters

» Characters come from ASCII (8-bit) or Unicode (16-
bit) tables

* Memory is a big long String of bytes
* In Java

e Strings are objects with their own attributes and
operations (methods)

e Strings are immutable

e Strings are very common in many applications

* In C Strings are not objects and is a byte array of
characters ending with NULL character “\o’

hat are boolean variables?

* Boolean variables only takes values TRUE or FALSE

* Cdoes not have boolean as a type
e Use o for false and 1 for true
e Technically we can use a byte to store things
* The condition in an if statement is a boolean variable

* Boolean variables can be combined using
e Logical AND (&&)
e Logical OR (]|)
e Logical NOT (!)
* Properties
e NOT (A and B) = NOT (A) or NOT(B)
e NOT (A or B) =NOT (A) and NOT(B)

« Prove these identities

A B A ond B

0 0 0

0 1 0

i 0 0

1 1 1
AND

Source: mathworks

- - 2 2 »

NOT

Prove /(A && B) = | B

e

Homework:

prove
I(A || B) = |A && B

e

Understanding UNIX

~ Operating Systems

End user Programmer
Application programs 05 Designer

Utilities
Operating System /

Computer Hardware

nix Operating System
* Began at AT & T in 1970’s
* Free source code for certain groups
e Many versions of unix
* Linux version
e Unix “like” system
* Free and open source

e Collaborative development

e Small kernel

~ Unix system shell

k///’—~—Prnmpt $_,_—§\\

EBead SHELL Execute
Enmmand command

Transform
command

Accessing unix

* Download and install SSH secure shell
» SSH

e Provides access to unix.andrew.cmu.edu machines

e Using a shell we can perform various tasks

- mkdir, cp, quota, my,
* We develop and test our C and perl programs
e We write shell scripts to make life easy

I What is C? “

* A general purpose programming language
e Developed in 1972 at AT &T for use with unix

* One of most popular programming languages
e High level procedural programming
e Direct Access to low memory

* C++ is the object oriented extension to C

e Popular in industry
e STL

vlearn C

* Good

e Flexibility

e Efficiency

e Low level access to memory
e Caution

e Low level access to memory

« Memory access violations (buffer overflows)

e Hard to debug C code
» Use a debugger such as gdb

e Platform dependent

FRrE——

#include <stdio.h>
int main(int argc, char* argv([]) {
printf(“hello world\n”);

return O;

J

ITe of;C program

Hello.c Hello.i
preprocessor
Hello.o
Hello

ow programs get execute

registers

Bus interface [/O bridge

USB Graphics Disk
controller Adapter controller HD

rogram Development Process
» Editing
e The process of creating the source code
* Compiling
e The process of translating source code to object code
* Linking

e The process of linking all libraries and other object codes to
generate the executable code

* Executing
e The process of running the program executable
» Testing/Debugging

e The process of making sure program does what it is supposed
todo

e Consider all “edge” cases and make sure code does not break
for some inputs

e C compiler — gcc
* GNU C compiler

e Compiles, assemble and produce executable code

* Also can compile

e C++, Modula-3, FORTRAN, Objective-C, ...
* Examples

e gcc hello.c = a.out

e gcc —c hello.c = hello.o

e gcc -S hello.c = hello.s

e Using various flags

« gcc —std=cgg hello.c
« gcc —Wall -pedantic —ansi -O2 program.c

P———

ANSI C

 Standard published by

e American National Standards institute for C language

* Some ANSI features
e Do not mix data and code

e Do not use functions that are not part of the standard
libraries

ving from Java to

From object oriented thinking to procedural thinking
From classes and methods to functions/procedures

From object oriented decomposition to procedural
decomposition

From a relatively “safe” high level language to fairly low level
“unsafe” language

From no direct access to memory (Java) to direct manipulation
of memory.

Automatic garbage collection to no garbage collection (clean up)

e

Code Examples

e

Data Representations

Data representations

° int X =15;
e Decimal representation of 15
* int x = oxoF;
e Hexadecimal (base-16) representation of 15
® 15 = 0000 ... 0000 1111
e Binary representation of 15
* Typically integers are 32-bits
* Most significant bit is the sign bit (1-negative, o-positive)
e What is the largest signed integer that can be represented by
32-bits?
e What is the largest unsigned int?
* More about this in skills lab 1 and in lecture o2

%mgs to do before next c}ass

* Take the background survey from Bb->course
information

* Login to salon and complete the prior knowledge
assignment

* After you complete, go back to assignment view mode
and select up to 3 responses that you like from global
questions

* Make your self familiar with course websites
e Bband
* (o to recitation tomorrow

e

Next: more on Representation of
data

