

Lagrange multipliers - Dual variables

Dual SVM formulation the non-separable case

maximize $_{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

Why did we learn about the dual

 SVM?There are some quadratic programming algorithms that can solve the dual faster than the primal
Byt, more importantly, the "kernel trick"!!! Another little detour.

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree d
$d=1 \quad \phi(u) \cdot \phi(v)=\binom{u_{1}}{u_{2}} \cdot\binom{v_{1}}{v_{2}}=u_{1} v_{1}+u_{2} v_{2}=\binom{u_{2}}{u_{2}}=$-2dimensiand
$d=2 \quad \phi(u) \cdot \phi(v)=\binom{u_{1}^{2}}{u_{2}} \cdot\left(v_{1}^{2}\right)=u_{1}^{2} v_{2}^{2}+u_{1} \quad$

$$
\begin{aligned}
\cdot\left(\begin{array}{l}
v_{1}^{2} \\
v_{1} v_{2} \\
v_{2}^{2} \\
v_{2} v_{1}
\end{array}\right) & =u_{1}^{2} v_{1}^{2}+\mu_{1} \mu_{2} v_{1} v_{2}+\mu_{2}^{2} v_{2}^{2} \\
& =\left(\mu_{1} v_{1}\right)^{2}+\left(\mu_{2} \mu_{1} v_{2} v_{1}\right. \\
& \left.+2 \mu_{2} v_{2}\right)^{2} v_{1}: \mu_{2} v_{2}=\left(\mu_{1} v_{1}+\mu_{2} v_{2}\right)^{2}
\end{aligned}
$$

1

$$
=(\mu V)^{2}
$$

Finally: the "kernel trick"!

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

e.g., poly degrade $\quad \sum_{i} \alpha_{i} y_{i}=0$
$C \geq \alpha_{i} \geq 0$ $\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right)$

- Never represent features explicitly
\square Compute dot products in closed form
- ' Constant-time"high-dimensional dotproducts for many classes of features
$b=y_{k}-\mathbf{w} . \Phi\left(\mathbf{x}_{k}\right)$
for any k where $C>\alpha_{k}>0$
- Very interesting theory - Reproducing Kernel Hilbert Spaces

Not covered in detail in 10701/15781, more in 10702

Polynomial kernels

- All monomials of degree d in $\mathrm{O}(\mathrm{d})$ operations:
$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=(\underline{\mathbf{u} \cdot \mathbf{v}})^{d}=$ polynomials of degree d
- How about all monomials of degree up to d?

Solution 0: $\phi(u) \cdot \phi(v)=\sum_{i=0}^{d}(u \cdot v)^{i}$

$$
\begin{gathered}
\square \text { Better solution: } \\
(u v)^{\prime}+(u v)^{2}+(u v)^{\circ}+(v . u)^{\prime}=(u v+1)^{2} \\
\text { poly dxagec up to }: \quad K(u, v)=(u . v+1)^{d} \\
\text { including } d:
\end{gathered}
$$

Common kernels

- Polynomials of degree d $K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}$
- Polynomials of degree up to d $K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}$
squaned-exponential

$$
\begin{aligned}
& \text { ential } \quad \phi(u) \longrightarrow 1.6 \text { billian dimensions } \\
& \text { nels } K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{2 \sigma_{\pi}^{2}}\right) \\
& \phi(u)=\text { infinity dimensional. }
\end{aligned}
$$

- Gaussian kernels
- Sigmoid $K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)$

Overfitting?

- Huge feature space with kernels, what about overfitting???
\square Maximizing margin leads to sparse set of support vectors
Some interesting theory says that SVMs search for simple hypothesis with large margin
\square Often robust to overfitting

What about at classification time

- For a new input \mathbf{x}, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign (w. $\Phi(\mathbf{x})+\mathrm{b})$
- Using kernels we are cool!

$$
K(\mathbf{u}, \mathbf{v})=\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})
$$

$$
\underline{\mathrm{w}}=\underline{\sum_{i} \alpha_{i} y_{i} \Phi\left(\mathrm{x}_{i}\right)}
$$

w. $\phi(x)$
$=\left(\sum_{i} \alpha_{i} y_{i} \phi\left(x_{i}\right)\right) \cdot \phi(x)$
$\frac{b}{g}=y_{k}-\mathbf{w} \cdot \Phi\left(\mathrm{x}_{k}\right)$
for any k where $C>\alpha_{k}>0$
$=\sum_{i} \alpha_{i} y_{i} \phi\left(x_{i}\right) \cdot \phi(x)=\sum_{i=1}^{\text {tanning } \alpha_{i} y_{i}} y_{i} k\left(x, x_{i}\right)$

SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_{i}
- At classification time, compute:

$$
\begin{aligned}
& \left.\underline{\mathbf{w} \cdot \Phi(\mathbf{x})}=\frac{\sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)}{\underline{b}=y_{k}-\sum_{\substack{i \\
\text { for any } k \text { where } C>\alpha_{k}>0}}^{\alpha_{i} y_{i} K\left(\mathbf{x}_{k}, \mathbf{x}_{i}\right)}} \right\rvert\, \begin{array}{l}
\text { Classify as } \\
\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{x})+b)
\end{array}
\end{aligned}
$$

Remember kernel regression

SVMs v. Kernel Regression

SVMs
$\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{x})+b)$
or $\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)$

Kernel Regression

$$
\operatorname{sign}\left(\frac{\sum_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)}{\sum_{j} K\left(\mathbf{x}, \mathbf{x}_{j}\right)}\right)
$$

types of classifier

What's the difference between SVMs and Logistic Regression?		
	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	No actually, yes...

Kernels in logistic regression

$$
P(Y=1 \mid x, \mathbf{w})=\frac{\mathbf{1}}{1+e^{-(\mathbf{w} \cdot \Phi(\mathbf{x})+b)}} \text { fectures in high }
$$

- Define weights in terms of support vectors:

$$
\begin{aligned}
\mathbf{w} & =\sum_{i} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right) \\
\boldsymbol{P}(Y=1 \mid \boldsymbol{x}, \mathbf{w}) & =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right) \cdot \Phi(\mathbf{x})+b\right)}} \\
& =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)}} \text { Same idea }
\end{aligned}
$$

Derive simple gradient descent rule on α_{i}

What's the difference between SVMs and Logistic Regression? (Revisited)		
-	QP, (spe	gredied
	SVMs	Logistic Regression
Loss function	${ }_{0}$ Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse mung $\alpha_{i}=0$	Often yes! \# of support vectors	Almost always no!batans Ot los fem \qquad
Semantics of output	"Margin" "confidence"	Real probabilities $P(Y=1 \mid x)=0.62$

What you need to know

Dual SVM formulation
How it's derived

- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

Announcements

© HW2 solutions

- Midterm:

Thursday Oct. 25th, Thursday 5-6:30pm, MM A14

- All content up to, and including SVMs and Kernels

B Dins learning theory
open book, notes, an

- Midterm review:

Tuesday, $\underline{5-6: 30 \mathrm{pm}}$, location then 5409

- You should read midterms for Spring 2006 and ${ }^{\text {s } 2 \text { ' }} 2007$ before the review session
- Then, you can ask about some of the questions in these midterms

What now...

- We have explored many ways of learning from data
- But...
\square How good is our classifier, really?
\square How much data do I need to make it "good enough"?

A simple setting...

- Classification
m data points
Finite number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
\square Gets zero error in training - error $_{\text {train }}(h)=0$
- What is the probability that h has more than ε true error?
\square error $_{\text {true }}(h) \geq \varepsilon$

How likely is a bad hypothesis to get m data points right?

- Hypothesis h that is consistent with training data \rightarrow got m i.i.d. points right
h "bad" if it gets all this data right, but has high true error
- Prob. h with error true $(\mathrm{h}) \geq \varepsilon$ gets one data point right P (haggets one point right) $\leqslant 1-\varepsilon$
- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right
$P\left(h_{\text {bad }}\right.$ gets m iid points right $) \leq(1-\varepsilon)^{m}$

$$
\text { exponentially small (as } m \text { increcises) }
$$

But there are many possible hypothesis that are consistent with training data

How likely is learner to pick a bad hypothesis

- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right $P\left(h_{\text {bad }}\right.$ consisitent with data) $\leqslant(1-\varepsilon)^{m}$
- There are k hypothesis consistent with data
\square How likely is learner to pick a bad one?
$P(\exists h$ thatis had and cosisistent with data)
$=P\left(h_{1}\right.$ bad, consisisunt $V h_{2}$ bad cossisistant $V \ldots v h_{k}$ bad scmasiket $)$

How likely is learner to pick a bad hypothesis

Prob. h with error ${ }_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right $p\left(h_{\text {bad }}\right.$, consistent $) \leqslant(1-\varepsilon)^{m}$

- There are k hypothesis consistent with data \square How likely is learner to pick a bad one?

