

First order condition

If f is differentiable in all dom f

■ Then f convex if and only if dom f is convex and

©2008 Carlos Guestrin

5

Second order condition (1D f)

■ If f is twice differentiable in dom f

- Then f convex if and only if dom f is convex and
- Note 1: Strictly convex if:
- Note 2: dom f must be convex
 - $| f(x) = 1/x^2$
 - □ dom f = $\{x \in R | x \neq 0\}$

©2008 Carlos Guestrin

Second order condition (general case)

- - If f is twice differentiable in dom f
 - Then f convex if and only if **dom** f is convex and
 - Note 1: Strictly convex if:

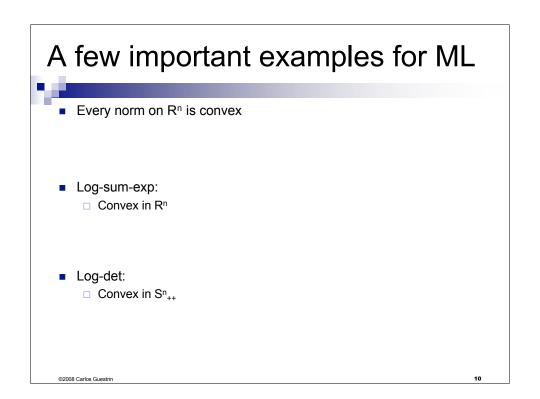
©2008 Carlos Guestrin

-

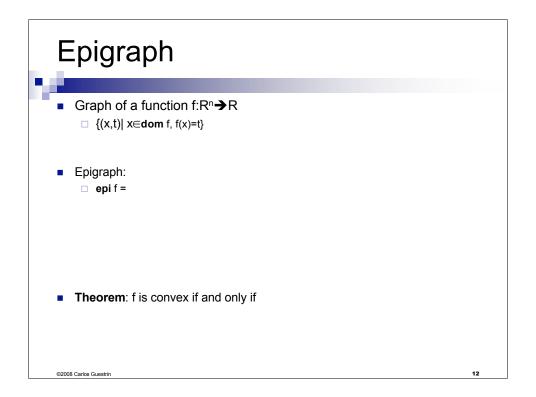
Quadratic programming

- $f(x) = (1/2) x^T A x + b^T x + c$
- Convex if:
- Strictly convex if:
- Concave if:
- Strictly concave if:

©2008 Carlos Guestrin



Extended-value extensions Convex function f over convex dom f Extended-value extension: Still convex: For concave functions Very nice for notation, e.g., Minimization: Sum: f₁ over convex dom f₁ f₂ over convex dom f₂ excess carbos carbos cuestin



Support of a convex set and epigraph

- If f is convex & differentiable
- For $(x,t) \in epi f$, $t \ge f(x)$, thus:

Rewriting:
$$(x,t) \in \mathbf{epi} f \Rightarrow \left[\begin{array}{c} \nabla f(x_0) \\ -1 \end{array} \right]^T \left(\left[\begin{array}{c} x \\ t \end{array} \right] - \left[\begin{array}{c} x_0 \\ f(x_0) \end{array} \right] \right) \leq 0$$

- Thus, if convex set is defined by epigraph of convex function
 - □ Obtain support of set by gradient!!
 - □ If f is not differentiable

©2008 Carlos Guestrin

Restriction of a convex function to a line

- f:Rⁿ→R convex if and only if g(t) (R→R) is convex in t
 - □ For all x_0 ∈**dom** f, V∈ R^n

□ dom g =

- Can make it much easier to check if f is convex, e.g.,
 - \Box f(X) = log det X
 - proof in the book...

Operations that preserve convexity

- Many operations preserve convexity
 - ☐ Knowing them will make your life much easier when you want to show that something is convex
 - Examples in next few slides
- Simplest: Non-negative weighted sum:
 - ☐ If all f_i's are convex, then f is
 - ☐ If all f_i's are concave, then f is
 - □ Example: integral of f(x,y)
- Affine mapping: f:Rⁿ→R, A∈R^{nxm}, b∈R^m
 - \Box g(x) = f(Ax+b)
 - □ dom g =
 - □ If f is convex, then
 - □ If f is concave, then

©2008 Carlos Guestrin

15

Pointwise maximum and supremum

- If f_i's are convex, then
- Piecewise linear convex functions:
 - □ Fundamental for POMDPs
- For x in a convex set C, sum of the r largest elements:
 - □ Sort x, pick r largest components, sum them:
- Maximum eigenvalue of symmetric matrix X∈R^{nxn}, f:R^{nxn}→R
 - □ f(X) =

©2008 Carlos Guestrin

Pointwise maximum of affine functions: general representation

- We saw: convex set can be written as intersection of (infinitely many) hyperplanes:C convex, then
- Convex functions can be written as supremum of (infinitely many) lower bounding hyperplanes:
 - □ f convex function, then

©2008 Carlos Guestri

Discussion on this slide subject to mild conditions on sets and functions, see book

17

Composition: scalar differentiable, real domain case

- How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)
- If h:R^k→R and g:Rⁿ→R^k, when is f(x) = h(g(x)) convex (concave)?
 dom f = {x ∈ dom g| g(x) ∈ dom h}
- Simple case: $h:R \rightarrow R$ and $g:R^n \rightarrow R$, **dom** g =**dom** h = R, g and h differentiable
 - □ E.g., $g(x)=x^T\sum x$, $\sum psd$, $h(y)=e^y$
- Second derivative:
 - $\ \ \, \square \quad f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$
 - When is f''(x)≥0 (or f''(x)≤0) for all x?
- Example of sufficient (but not necessary) conditions:
 - $\hfill \Box$ \hfill f convex if h is convex and nondecreasing and g is convex
 - □ f convex if h is convex and nonincreasing and g is concave
 - f concave if h is concave and nondecreasing and g is concave
 - $\hfill \square$ \hfill f concave if h is concave and nonincreasing and g is convex

©2008 Carlos Guestrin

Composition: scalar, general case

- ۲
 - If $h: R^k \rightarrow R$ and $g: R^n \rightarrow R^k$, when is f(x) = h(g(x)) convex (concave)?
 - □ dom f = $\{x \in \text{dom } g | g(x) \in \text{dom } h\}$
 - Simple case: h:R→R and g:Rⁿ→R, general domain and non-differentiable
 - □ Example of sufficient (but not necessary) conditions:
 - f convex if h is convex and h nondecreasing and g is convex
 - f convex if h is convex and h nonincreasing and g is concave
 - f concave if h is concave and h nondecreasing and g is concave
 - f concave if h is concave and h nonincreasing and g is convex
 - nondecreasing or nonincreasing condition on extend value extension of h is fundamental
 - counter example in the book if nondecreasing property holds for h but not for h, the composition no longer convex
 - □ If $h(x)=x^{3/2}$ with **dom** $h = R_+$, convex but extension is not nondecreasing
 - ☐ If $h(x)=x^{3/2}$ for $x\ge 0$, and h(x)=0 for x<0, **dom** h=R, convex and extension is nondecreasing

©2008 Carlos Guestrin

19

Vector composition: differentiable

- If h:R^k→R and g:Rⁿ→R^k, when is f(x) = h(g(x)) convex (concave)?
 - □ **dom** $f = \{x \in \text{dom } g | g(x) \in \text{dom } h\}$
- Focus on $f(x) = h(g(x)) = h(g_1(x), g_2(x),..., g_k(x))$
- Second derivative:
 - \Box f''(x) = g'(x)^T $\nabla^2 h(g(x))g'(x) + \nabla h(g(x)) g''(x)$
 - When is f'(x)≥0 (or f'(x)≤0) for all x?
- Example of sufficient (but not necessary) conditions:
 - ☐ f convex if h is convex and nondecreasing in each argument, and g are convex
 - $\hfill \square$ f convex if h is convex and nonincreasing in each argument, and g_i are concave
 - $\hfill \Box$ \hfill f concave if h is concave and nondecreasing in each argument, and g_i are concave
- $\hfill\Box$ \hfill f concave if h is concave and nonincreasing in each argument, and g_i are convex
- Back to log-sum-exp-positive-weighted-sum-monomials
 - □ **dom** f = R_{++}^n , $c_i > 0$, $a_i \ge 1$
 - log sum exp convex

©2008 Carlos Guestrii

Minimization

- If f(x,y) is convex in (x,y) and C is a convex set, then:
- Norm is convex: ||x-y||
 - □ minimum distance to a set C is convex:

©2008 Carlos Guestrin

21

Perspective function

- If f is convex (concave), then the perspective of f is convex (concave):
 - \Box t>0, g(x,t) = t f(x/t)
- KL divergence:
 - □ f(x) = -log x is convex
 - □ Take the perspective:
 - \Box Sum over many pairs (x_i,t_i)

©2008 Carlos Guestrin