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Convex Functions
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Concave functions
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Proving convexity for a very
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First order condition
= JEE

m If f is differentiable in all dom f

m Then f convex if and only if dom f is convex and
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Second order condition (1D f)
" JE

m If fis twice differentiable in dom f

m  Then f convex if and only if dom f is convex and

m  Note 1: Strictly convex if:
m Note 2: dom f must be convex

f(x)=1/x2
dom f = {xER|x=0}
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Second order condition

. Jgeneral.case)

m If fis twice differentiable in dom f

m  Then f convex if and only if dom f is convex and

m  Note 1: Strictly convex if:
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Quadratic programming

" JE
m f(x)=(1/2) xTAx+bT™x + ¢

Convex if:
Strictly convex if:

Concave fif:
Strictly concave if:
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Simple examples
“

m Exponentiation: e
convex on R, any aeR

m Powers: x2aonR,,
Convex for a<0 or a=1
Concave for 0<a=<1

m  Logarithm: log x
Concave on R,

= Entropy: -x log x
Concave on R,
(0 log 0 = 0)
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A few important examples for ML
"

m  Every norm on R" is convex

m Log-sum-exp:
Convex in Rn

m Log-det:
Convex in Sn,,
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Extended-value extensions
" A

m  Convex function f over convex dom f

m Extended-value extension:

m  Still convex:

m For concave functions

m Very nice for notation, e.g.,
Minimization:

Sum:
= f, over convex dom f,
= f, over convex dom f,
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Epigraph
"

m Graph of a function f:R"2»R
{(x,t)] x€dom f, f(x)=t}

= Epigraph:
epif=

m  Theorem: f is convex if and only if
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Support of a convex set and epigraph
" S

m [ffis convex & differentiable
f(x)=f(xo) + Vf(xo)T(x- Xo)

m For (x,t)eepif, t=f(x), thus:

= Rewriting: .
=[] (5] )=

m  Thus, if convex set is defined by epigraph of convex function
Obtain support of set by gradient!!
If f is not differentiable
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Restriction of a convex function to a line
" A
m f:R"™>R convex if and only if g(t) (R=R) is convex in t
For all x,edom f, veR"

domg =

m Can make it much easier to check if f is convex, e.g.,
f(X) = log det X
proof in the book...
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Operations that preserve convexity
* JdE

m  Many operations preserve convexity

Knowing them will make your life much easier when you want to show that something is
convex

Examples in next few slides
m  Simplest: Non-negative weighted sum:

If all f’s are convex, then fis
If all f’s are concave, then f is

Example: integral of f(x,y)

m  Affine mapping: R"»R, AGR™™, beR™
g(x) = f(Ax+b)

domg =

If f is convex, then
If f is concave, then
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Pointwise maximum and

- adilenum

m [ff’s are convex, then

m Piecewise linear convex functions:
Fundamental for POMDPs

m For x in a convex set C, sum of the r largest elements:
Sort x, pick r largest components, sum them:

m  Maximum eigenvalue of symmetric matrix X&Rmn, f:Rm=n=»R
f(X) =
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Pointwise maximum of affine

. fupctions: general representation

m  \We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
C convex, then

m  Convex functions can be written as supremum of (infinitely many) lower bounding
hyperplanes:
f convex function, then

©2008 Carlos Guestrin Discussion on this slide subject to mild conditi i 17

Composition: scalar differentiable,

. Jgaldomain case

m  How do | prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)

= If h:R*>R and g:R"=> Rk, when is f(x) = h(g(x)) convex (concave)?
dom f = {x € dom g| g(x) € dom h}

= Simple case: h:R<>R and g:R"2R, dom g = dom h = R, g and h differentiable
E.g., g(x)=xT¥x, ¥ psd, h(y) = e¥
m  Second derivative:

(x) = h"(g(x))g'(x)? + h'(9(x))g"(x)
= When is f’(x)20 (or f’(x)<0) for all x?

m  Example of sufficient (but not necessary) conditions:
f convex if h is convex and nondecreasing and g is convex
f convex if h is convex and nonincreasing and g is concave
f concave if h is concave and nondecreasing and g is concave
f concave if h is concave and nonincreasing and g is convex
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Composition: scalar, general case
" J

= If h:R*>R and g:R"=> Rk, when is f(x) = h(g(x)) convex (concave)?
dom f = {x € dom g| g(x) € dom h}

m  Simple case: h:R=>R and g:R"2R, general domain and non-differentiable
Example of sufficient (but not necessary) conditions:
= fconvex if h is convex and h nondecreasing and g is convex
= fconvex if his convex and h nonincreasing and g is concave
= fconcave if h is concave and h nondecreasing and g is concave
= fconcave if h is concave and h nonincreasing and g is convex

m nondecreasing or nonincreasing condition on extend value extension of h is fundamental

counter example in the book if nondecreasing property holds for h but not for h, the composition no
longer convex

If h(x)=x32 with dom h = R,, convex but extension is not nondecreasing

If h(x)=x32 for x>0, and h(x)=0 for x<0, dom h = R, convex and extension is nondecreasing
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Vector composition: differentiable
* JE

= If h:R*>R and g:R"=> Rk, when is f(x) = h(g(x)) convex (concave)?
dom f = {x € dom g| g(x) € dom h}

= Focus on f(x) = h(g(x)) = h(g4(x), o(X).-.-, 9(X))

m  Second derivative:
'(x) = g'(x)T V2h(g(x))g'(x) + Vh(g(x)) 9"(x)

= When is f’(x)20 (or f’(x)<0) for all x?

m  Example of sufficient (but not necessary) conditions:
f convex if h is convex and nondecreasing in each argument, and g; are convex
f convex if h is convex and nonincreasing in each argument, and g; are concave
f concave if h is concave and nondecreasing in each argument, and g; are concave
f concave if h is concave and nonincreasing in each argument, and g; are convex

m  Back to log-sum-exp-positive-weighted-sum-monomials

dom f=R",,, ¢>0, a;221

log sum exp convex
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Minimization
" A

m If f(x,y) is convex in (x,y) and C is a convex set, then:

m Norm is convex: ||x-y||
minimum distance to a set C is convex:
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Perspective function
" A

m [f fis convex (concave), then the perspective of f is convex (concave):
>0, g(x,t) =t f(x/t)

m KL divergence:
f(x) = -log x is convex

Take the perspective:

Sum over many pairs (x,t;)
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