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Convex Functions
 Function f:RnR is convex if

 Domain is convex


 Generalization: Jensen’s inequality:

 Strictly convex function:
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Concave functions
 Function f is concave if





 Strictly concave:

 We will be able to optimize:
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Proving convexity for a very
simple example

 f(x)=x2
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First order condition
 If f is differentiable in all dom f

 Then f convex if and only if dom f is convex and
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Second order condition (1D f)
 If f is twice differentiable in dom f

 Then f convex if and only if dom f is convex and

 Note 1: Strictly convex if:

 Note 2: dom f must be convex
 f(x)=1/x2

 dom f = {x∈R|x≠0}
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Second order condition
(general case)

 If f is twice differentiable in dom f

 Then f convex if and only if dom f is convex and

 Note 1: Strictly convex if:
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Quadratic programming
 f(x) = (1/2) xTAx + bTx + c

 Convex if:
 Strictly convex if:

 Concave if:
 Strictly concave if:
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Simple examples
 Exponentiation: eax

 convex on R, any a∈R

 Powers: xa on R++
 Convex for a≤0 or a≥1
 Concave for 0≤a≤1

 Logarithm: log x
 Concave on R++

 Entropy: -x log x
 Concave on R+

 (0 log 0 = 0)
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A few important examples for ML
 Every norm on Rn is convex

 Log-sum-exp:
 Convex in Rn

 Log-det:
 Convex in Sn

++



6

11©2008 Carlos Guestrin

Extended-value extensions
 Convex function f over convex dom f

 Extended-value extension:

 Still convex:

 For concave functions

 Very nice for notation, e.g.,
 Minimization:

 Sum:
 f1 over convex dom f1
 f2 over convex dom f2
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Epigraph
 Graph of a function f:RnR

 {(x,t)| x∈dom f, f(x)=t}

 Epigraph:
 epi f =

 Theorem: f is convex if and only if
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Support of a convex set and epigraph

 If f is convex & differentiable
  f(x)≥f(x0) + ∇f(x0)T(x- x0)

 For (x,t)∈epi f, t≥f(x), thus:


 Rewriting:

 Thus, if convex set is defined by epigraph of convex function
 Obtain support of set by gradient!!
 If f is not differentiable
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Restriction of a convex function to a line

 f:RnR convex if and only if g(t) (RR) is convex in t
 For all x0∈dom f, v∈Rn



 dom g =

 Can make it much easier to check if f is convex, e.g.,
 f(X) = log det X
 proof in the book…

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Operations that preserve convexity
 Many operations preserve convexity

 Knowing them will make your life much easier when you want to show that something is
convex

 Examples in next few slides

 Simplest: Non-negative weighted sum:


 If all fi’s are convex, then f is
 If all fi’s are concave, then f is

 Example: integral of f(x,y)

 Affine mapping: f:RnR, A∈Rnxm, b∈Rm

 g(x) = f(Ax+b)

 dom g =

 If f is convex, then
 If f is concave, then
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Pointwise maximum and
supremum

 If fi’s are convex, then

 Piecewise linear convex functions:
 Fundamental for POMDPs

 For x in a convex set C, sum of the r largest elements:
 Sort x, pick r largest components, sum them:

 Maximum eigenvalue of symmetric matrix X∈Rnxn, f:RnxnR
 f(X) =
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Pointwise maximum of affine
functions: general representation

 We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
 C convex, then

 Convex functions can be written as supremum of (infinitely many) lower bounding
hyperplanes:
 f convex function, then

Discussion on this slide subject to mild conditions on sets and functions, see book
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Composition: scalar differentiable,
real domain case

 How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)


 If h:RkR and g:RnRk, when is f(x) = h(g(x)) convex (concave)?
 dom f = {x ∈ dom g| g(x) ∈ dom h}

 Simple case: h:RR and g:RnR, dom g = dom h = R, g and h differentiable
 E.g., g(x)=xT∑x, ∑ psd, h(y) = ey

 Second derivative:
 f’’(x) = h’’(g(x))g’(x)2 + h’(g(x))g’’(x)

 When is f’’(x)≥0 (or f’’(x)≤0) for all x?

 Example of sufficient (but not necessary) conditions:
 f convex if h is convex and nondecreasing and g is convex
 f convex if h is convex and nonincreasing and g is concave
 f concave if h is concave and nondecreasing and g is concave
 f concave if h is concave and nonincreasing and g is convex
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Composition: scalar, general case
 If h:RkR and g:RnRk, when is f(x) = h(g(x)) convex (concave)?

 dom f = {x ∈ dom g| g(x) ∈ dom h}

 Simple case: h:RR and g:RnR, general domain and non-differentiable
 Example of sufficient (but not necessary) conditions:

 f convex if h is convex and h nondecreasing and g is convex
 f convex if h is convex and h nonincreasing and g is concave
 f concave if h is concave and h nondecreasing and g is concave
 f concave if h is concave and h nonincreasing and g is convex

 nondecreasing or nonincreasing condition on extend value extension of h is fundamental
 counter example in the book if nondecreasing property holds for h but not for h, the composition no

longer convex

 If h(x)=x3/2 with dom h = R+, convex but extension is not nondecreasing

 If h(x)=x3/2 for x≥0, and h(x)=0 for x<0, dom h = R, convex and extension is nondecreasing

~
~

~
~

~
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Vector composition: differentiable
 If h:RkR and g:RnRk, when is f(x) = h(g(x)) convex (concave)?

 dom f = {x ∈ dom g| g(x) ∈ dom h}
 Focus on f(x) = h(g(x)) = h(g1(x), g2(x),…, gk(x))

 Second derivative:
 f’’(x) = g’(x)T ∇2h(g(x))g’(x) + ∇h(g(x)) g’’(x)

 When is f’’(x)≥0 (or f’’(x)≤0) for all x?

 Example of sufficient (but not necessary) conditions:
 f convex if h is convex and nondecreasing in each argument, and gi are convex
 f convex if h is convex and nonincreasing in each argument, and gi are concave
 f concave if h is concave and nondecreasing in each argument, and gi are concave
 f concave if h is concave and nonincreasing in each argument, and gi are convex

 Back to log-sum-exp-positive-weighted-sum-monomials


 dom f = Rn
++ , ci>0, ai≥1

 log sum exp convex
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Minimization
 If f(x,y) is convex in (x,y) and C is a convex set, then:

 Norm is convex: ||x-y||
 minimum distance to a set C is convex:
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Perspective function
 If f is convex (concave), then the perspective of f is convex (concave):

 t>0,  g(x,t) = t f(x/t)

 KL divergence:
 f(x) = -log x is convex

 Take the perspective:

 Sum over many pairs (xi,ti)


