
1 

©2008 Carlos Guestrin 1 

Submodular functions 
cont. 

Optimization - 10725 
Carlos Guestrin 
Carnegie Mellon University 

April 30th, 2008 

Submodularity 

  Formalizes notion of diminishing returns 

  Equivalent definition: 
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What do we get from 
submodularity 

  Submodularity is a general property of set functions 

  Submodular function can be minimized in polynomial 
time! 

  But our problem is  
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Another example… 

  Maximum cover 
 Ground elements 
 Set of sets 
 Pick k sets, maximize number of covered elements 
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Maximizing submodular 
functions – cardinality constraint 

  Given 
  Submodular function  
  Normalized 
  Non-decreasing 

  Greedy algorithm guarantees 

  Can you get better algorithm? 
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Online bounds 
  Submodularity provides bounds on the quality of the solution A 

obtained by any algorithm 
  For normalized, non-decreasing functions 

  Advantage of adding elements to A: 

  Bound on the quality of any set A: 

  Tighter bound: 

6 ©2008 Carlos Guestrin 



4 

Battle of the Water Sensor Networks Competition 

  Real metropolitan area network (12,527 nodes) 
  Water flow simulator provided by EPA 
  3.6 million contamination events 
  Multiple objectives: Detection time, affected population, … 
  Place sensors that detect well “on average” 
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BWSN Competition results 

  13 participants 
  Performance measured in 30 different criteria 
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G: Genetic algorithm 

H: Other heuristic 

D: Domain knowledge 

E: “Exact” method (MIP) 
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Simulated all                                          on 2 weeks / 40 processors 

152 GB data on disk 
 Very accurate sensing quality  

, 16 GB in main memory (compressed) 

Using “lazy evaluaGons”: 
1 hour/20 sensors 
Done aLer 2 days!  

30 hours/20 sensors 

6 weeks for all 
30 sePngs  

3.6M contaminaGons 

Very slow evaluaGon of F(A)  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Exhaustive search 
(All subsets) 

Naive 
Greedy 

      ubmodularity  
   to the rescue: 

What was the trick? 
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Lazy Greedy 

Lazy evaluations 
  Naïve implementation of greedy: 

  Advantage of an element never increases: 
  Advantage:  
  What if you already picked a larger set: 

 Set after picking i elements: Ai 

  Lazy evaluations: 
  Keep a priority queue over elements: 

 Initialize with advantage of each element  

  Pick element on top, recompute priority 
  If element remains on top 
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Other maximization settings 

  Non-monotone submodular functions 

  Non-unit costs 

  Complex constraints 
 Paths 
 Spanning trees 

  Worst-case optimization  
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Announcements 

  University Course Assessments 
 Please, please, please, please, please, please, please, please, 

please, please, please, please, please, please, please, please… 
  Project: 

  Poster session: Tomorrow 3-6pm, NSH Atrium  
  please arrive a 15mins early to set up 
  Don’t wait until the last minute to print 

  Paper: May 5th by 3pm  
  electronic submission by email to instructors list 
  maximum of 8 pages, NIPS format 
  no late days allowed 

  Final: 
 Out: Monday, May 5 
 Due: Friday, May 9 
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Submodularity and concavity 

  Consider set function F(A) that only depends |A|: 

  Recall defn of submodular functions: 

  In fact, F(|A|) submodular if and only if  
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Submodular polyhedron  
  |V|=n,  for x in Rn  

  Define X(A) =  

  Submodular polyhedron 

  For positive costs c, suppose we maximize: 
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Maximizing over submodular 
polyhedron 

  Want: 

  Complex polyhedron, but very simple solution 
 Order nodes in increasing order of cost: 

 OPT x: 
    
    

  Prove optimality using duality 
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Extension of a set function 

  For any set function F, define extension of F by: 

  Easy to compute for submodular functions 

  Amazing Theorem:  
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What can we do with convexity 
of extension? 
  Suppose cA is a 01-vector for set A: 

  c(i) =  

  Formulate maximization: 

  At optimum: 
 By telescopic sum using OPT x  
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Minimizing submodular functions 

  We know that  
  Integer program: 

  Convex relaxation 

 At optimum,  
 Can be solved using 

  Thus, submodular function minimization: 
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Minimizing symmetric 
submodular fns 
  Minimizing general submodular fns, not practical, because of 

ellipsoid algorithm 

  Symmetric submodular fns: 

  If submodular function symmetric: 

  Want non-trivial minimum: 

  Queryanne’s Algorithm for minimizing symmetric submodular fns: 
  Very simple to implement 
  Only O(n3) 
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Application of minimizing 
symmetric submodular fns 

  Given set V of random variables 
 Split into two sets that are as independent as possible 

  Submodular function: 

  Can be optimized using Queyranne’s algorithm 
 Useful, e.g., structure learning in graphical models 
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Submodular fns overview 
  Minimized in polytime 
  Approximate maximization 

  Under many different constrained settings 

  Many many applications in AI/ML 
  Structure learning in graphical models 
  Clustering 
  Active learning 
  Sensor placement 
  Viral marketing  
  What blogs should we read to stay in touch with important stories 
  … 

  Not explored enough, plenty of opportunities!! 
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