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Submodular functions
cont.

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University

April 30th, 2008

Submodularity

� Formalizes notion of diminishing returns

� Equivalent definition:
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What do we get from 
submodularity

� Submodularity is a general property of set functions

� Submodular function can be minimized in polynomial 
time!

� But our problem is 
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Another example…

� Maximum cover
� Ground elements
� Set of sets
� Pick k sets, maximize number of covered elements

4©2008 Carlos Guestrin



Maximizing submodular
functions – cardinality constraint
� Given

� Submodular function 
� Normalized
� Non-decreasing

� Greedy algorithm guarantees

� Can you get better algorithm?
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Online bounds
� Submodularity provides bounds on the quality of the solution A 

obtained by any algorithm
� For normalized, non-decreasing functions

� Advantage of adding elements to A:

� Bound on the quality of any set A:

� Tighter bound:
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Battle of the Water Sensor Networks Competition

� Real metropolitan area network (12,527 nodes)
� Water flow simulator provided by EPA
� 3.6 million contamination events
� Multiple objectives: Detection time, affected population, …
� Place sensors that detect well “on average”
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BWSN Competition results

� 13 participants
� Performance measured in 30 different criteria
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G: Genetic algorithm

H: Other heuristic

D: Domain knowledge

E: “Exact” method (MIP)
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Simulated all                                          on 2 weeks / 40 processors
152 GB data on disk
Î Very accurate sensing quality ☺

, 16 GB in main memory (compressed)

Using “lazy evaluations”:
1 hour/20 sensors
Done after 2 days! ☺

30 hours/20 sensors
6 weeks for all
30 settings /

3.6M contaminations

Very slow evaluation of F(A) /
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Naive
Greedy

ubmodularity 
to the rescue:

What was the trick?

©2008 Carlos Guestrin 9

Lazy Greedy

Lazy evaluations
� Naïve implementation of greedy:

� Advantage of an element never increases:
� Advantage: 
� What if you already picked a larger set:

� Set after picking i elements: Ai

� Lazy evaluations:
� Keep a priority queue over elements:

� Initialize with advantage of each element 

� Pick element on top, recompute priority
� If element remains on top
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Other maximization settings

� Non-monotone submodular functions

� Non-unit costs

� Complex constraints
� Paths
� Spanning trees

� Worst-case optimization 
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Announcements

� University Course Assessments
� Please, please, please, please, please, please, please, please, 

please, please, please, please, please, please, please, please…
� Project:

� Poster session: Tomorrow 3-6pm, NSH Atrium 
� please arrive a 15mins early to set up
� Don’t wait until the last minute to print

� Paper: May 5th by 3pm 
� electronic submission by email to instructors list
� maximum of 8 pages, NIPS format
� no late days allowed

� Final:
� Out: Monday, May 5
� Due: Friday, May 9



Submodularity and concavity

� Consider set function F(A) that only depends |A|:

� Recall defn of submodular functions:

� In fact, F(|A|) submodular if and only if 
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Submodular polyhedron 
� |V|=n,  for x in Rn

� Define X(A) = 

� Submodular polyhedron

� For positive costs c, suppose we maximize:

14©2008 Carlos Guestrin



Maximizing over submodular 
polyhedron
� Want:

� Complex polyhedron, but very simple solution
� Order nodes in increasing order of cost:

� OPT x:
�

�

� Prove optimality using duality
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What can we do with convexity 
of extension?
� Suppose cA is a 01-vector for set A:

� c(i) = 

� Formulate maximization:

� At optimum:
� By telescopic sum using OPT x 
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Extension of a set function 1:
(corrected)

� For 01-cost vector cA, then:

� Define extension for general cost vector c:
� Can write c as:

� Obtain sets recursively:
� Find the smallest value in vector, choose λi to take this value:

� Extension:
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� For any set function F, define the extension of F 
to real valued vectors (rather than 01) as:
� Rewrite c using positive combination of 01-vectors:

� Extension:

� Amazing Theorem: 
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Extension of a set function 2:
(corrected)



Minimizing submodular functions

� We know that 
� Integer program:

� Convex relaxation

� At optimum, 
� Can be solved using

� Thus, submodular function minimization:
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Minimizing symmetric 
submodular fns
� Minimizing general submodular fns, not practical, because of 

ellipsoid algorithm

� Symmetric submodular fns:

� If submodular function symmetric:

� Want non-trivial minimum:

� Queryanne’s Algorithm for minimizing symmetric submodular fns:
� Very simple to implement
� Only O(n3)
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Application of minimizing 
symmetric submodular fns
� Given set V of random variables

� Split into two sets that are as independent as possible

� Submodular function:

� Can be optimized using Queyranne’s algorithm
� Useful, e.g., structure learning in graphical models
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Submodular fns overview
� Minimized in polytime
� Approximate maximization

� Under many different constrained settings

� Many many applications in AI/ML
� Structure learning in graphical models
� Clustering
� Active learning
� Sensor placement
� Viral marketing 
� What blogs should we read to stay in touch with important stories
� …

� Not explored enough, plenty of opportunities!!
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Closing….
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What you have learned this 
semester
� linear programs and QPs
� duality of LPs and QPs
� Lagrange multipliers
� semi-infinite (or just big) programs
� constraint generation, column generation, 

separation oracles
� combining dynamic programming and LPs
� maximum margin Markov networks   
� ellipsoid algorithm [1]
� gradient and subgradient descent
� convex sets, functions and programs
� duality of functions and sets 
� maxent vs MLE in Gibbs
� SOCP
� SDP
� Interior point methods, Newton's method
� Mixed integer linear programs 
� cutting planes, branch & bound, branch & cut
� approximation algorithms
� Submodularity
� …
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But we thought we could cover 
even more… ☺

� More types of optimization problems
� More algorithms
� More theory
� More applications
� …

� There are many other classes that may interest you:
� Approximation algorithms
� Advanced Approximation algorithms
� Randomized Algorithms
� Combinatorial Optimization (Tepper)
� Optimization and Decision Making (Tepper)
� Methods of Optimization (Math) 
� …
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You have done a lot!!! 

Thank You for the 
Hard Work!!!

And for being the 
guinea pigs for 
a new course 


