
1

©2008 Carlos Guestrin 1

Combinatorial optimization
and graphical models

Submodular functions
Optimization - 10725
Carlos Guestrin
Carnegie Mellon University

April 28th, 2008

Most probable explanation
(MPE) in a Markov network
  Markov net:

  Most probable explanation:

  In general, NP-complete problem, and hard to
approximate

2 ©2008 Carlos Guestrin

2

MPE for attractive MNs – 2 classes
  Attractive MN:

  E.g., image classification

  Finding most probable explanation

  Can be solved by
3 ©2008 Carlos Guestrin

MPE, Attractive MNs, k classes
  MPE for k classes:

  Multiway cut:
  Graph G, edge weights wij
  Finding minimum cut, separate s1,…,sk

  Multiway cut problem is
4 ©2008 Carlos Guestrin

3

Multiway cut – combinatorial algorithm

  Very simple alg:
  For each i=1…k

  Find cut Ci that separates si from rest
  Discard argmaxi w(Ci), return union of rest

  Algorithm achieves 2-2/k approximation
  OPT cut A* separates graph into k components

 No advantage in more than k

  From A* form A*1,…,A*k, where A*i separates si from rest

  Each edge in A* appears in
 Thus

5 ©2008 Carlos Guestrin

Multiway cut proof
  Thus, for OPT cut A* we have that:

  Each A*i separates si from rest, thus

  But, can do better, because

6 ©2008 Carlos Guestrin

4

General solutions to
combinatorial problems

  Nonlinear optimization
  Extremely general
  NP-Hard to solve

  Covex problems:
  Special problem structure
  General efficient solution algorithms
  Applies to many continuous problems

  Combinatorial optimization
  Integer programming

 Very general, but NP-hard

  Convex relaxations
  Approximation guarantees for many problems
  Usually solution is problem specific

  Though there are general principles

  Is there general problem structure in combinatorial problems?
  Analogously to convexity?

  Recognize structure and use general algorithms?
7 ©2008 Carlos Guestrin

Water distribution networks

Simulator from EPA 

   Water distribution in a city →
very complex system

   Pathogens in water can affect
thousands (or millions) of people

   Currently: Add chlorine to the
source and hope for the best

Chlorine

ATTACK!
could deliberately
introduce pathogen

©2008 Carlos Guestrin 8

5

Monitoring water networks
[Krause, Leskovec, G., Faloutsos, VanBriesen ‘08]

  Contamination of drinking water
could affect millions of people

  Place sensors to detect contaminations

   “Battle of the Water Sensor Networks” competition

Where should we place sensors  
to detect contamina8ons quickly ? 

Sensors

Simulator from EPA  Hach Sensor 
~$14K 

©2008 Carlos Guestrin 9

Model-based sensing

  Model predicts impact of contaminations
  For water networks: Water flow simulator from EPA
  For lake monitoring: Learn probabilistic models from data (later)

  For each subset A ⊆ V compute “sensing quality” F(A)

S2

S3

S4 S1 S2

S3

S4

S1

High sensing quality F(A) = 0.9 Low sensing quality F(A)=0.01

Model predicts
High impact

Medium impact
location

Low impact
location

Sensor reduces
impact through
early detection!

S1

Contamination

Set V of all
network junctions

©2008 Carlos Guestrin 10

6

Sensor placement

   Given: finite set V of locations, sensing quality F

   Want: A*⊆ V such that

 Typically NP-hard!

 How well can this simple heuristic do?

S1

S2

S3

S4

S5

S6
Greedy algorithm:

Start with A =Ø ;
For i = 1 to k

s* := argmaxs F(A ∪ {s})
A := A ∪ {s*}

©2008 Carlos Guestrin 11

Performance of greedy algorithm

Greedy score empirically close to optimal. Why?

Small subset of
Water networks
data

Greedy

Optimal

P
op

ul
at

io
n

pr
ot

ec
te

d

(h
ig

he
r i

s
be

tte
r)

Number of sensors placed

©2008 Carlos Guestrin 12

7

S2 S3

S4
S1

Key property: Diminishing returns

S2

S1

S’

Placement A = {S1, S2}  Placement B = {S1, S2, S3, S4} 

Adding S’  
will help a lot! 

Adding S’  
doesn’t help much New  

sensor S’ 

Theorem [Krause, Leskovec, G., Faloutsos, VanBriesen ’08]:
Sensing quality F(A) in water networks is submodular!

©2008 Carlos Guestrin 13

Submodularity

  Formalizes notion of diminishing returns

  Equivalent definition:

14 ©2008 Carlos Guestrin

8

What do we get from
submodularity

  Submodularity is a general property of set functions

  Submodular function can be minimized in polynomial
time!

  But our problem is

15 ©2008 Carlos Guestrin

Another example…

  Maximum cover
 Ground elements
 Set of sets
 Pick k sets, maximize number of covered elements

16 ©2008 Carlos Guestrin

9

Maximizing submodular
functions – cardinality constraint

  Given
  Submodular function
  Normalized
  Non-decreasing

  Greedy algorithm guarantees

  Can you get better algorithm?

17 ©2008 Carlos Guestrin

Online bounds
  Submodularity provides bounds on the quality of the solution A

obtained by any algorithm
  For normalized, non-decreasing functions

  Advantage of adding elements to A:

  Bound on the quality of any set A:

  Tighter bound:

18 ©2008 Carlos Guestrin

10

Battle of the Water Sensor Networks Competition

  Real metropolitan area network (12,527 nodes)
  Water flow simulator provided by EPA
  3.6 million contamination events
  Multiple objectives: Detection time, affected population, …
  Place sensors that detect well “on average”

©2008 Carlos Guestrin 19

BWSN Competition results

  13 participants
  Performance measured in 30 different criteria

0
5
10
15
20
25
30

To
ta

l S
co

re

H
ig

he
r i

s
be

tte
r

E

E

D D G

G
G

G
G

H

H

H

G: Genetic algorithm

H: Other heuristic

D: Domain knowledge

E: “Exact” method (MIP)

©2008 Carlos Guestrin 20

11

Simulated all  on 2 weeks / 40 processors 

152 GB data on disk 
 Very accurate sensing quality  

, 16 GB in main memory (compressed) 

Using “lazy evalua8ons”: 
1 hour/20 sensors 
Done a]er 2 days! 

30 hours/20 sensors 

6 weeks for all 
30 se^ngs 

3.6M contamina8ons 

Very slow evalua8on of F(A)  

1  2  3  4  5  6  7  8  9  10 
0 

100 

200 

300 

Number of sensors selected 

Ru
nn

in
g 
8m

e 
(m

in
ut
es
) 

Exhaustive search
(All subsets)

Naive
Greedy

      ubmodularity  
   to the rescue: 

What was the trick?

©2008 Carlos Guestrin 21

Lazy Greedy

Lazy evaluations
  Naïve implementation of greedy:

  Advantage of an element never increases:
  Advantage:
  What if you already picked a larger set:

 Set after picking i elements: Ai

  Lazy evaluations:
  Keep a priority queue over elements:

 Initialize with advantage of each element

  Pick element on top, recompute priority
  If element remains on top

22 ©2008 Carlos Guestrin

12

Other maximization settings

  Non-monotone submodular functions

  Non-unit costs

  Complex constraints
 Paths
 Spanning trees

  Worst-case optimization

23 ©2008 Carlos Guestrin

