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Most probable explanation

. ARE)inaMarkoy network

m Markov net:

m Most probable explanation:

m |n general, NP-complete problem, and hard to
approximate




MPE for attractive MNs — 2 classes

* JE
m Attractive MN:
E.g., image classification

m Finding most probable explanation

m Can be solved by
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MPE, Attractive MNs, k classes
" SN

m MPE for k classes:

= Multiway cut:
Graph G, edge weights w;
Finding minimum cut, separate s;,...,s,

m Multiway cut problem is
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Multiway cut — combinatorial algorithm
" N

m  Very simple alg:
For eachi=1...k

= Find cut C, that separates s; from rest
Discard argmax; w(C;), return union of rest

m Algorithm achieves 2-2/k approximation

OPT cut A* separates graph into k components
= No advantage in more than k

From A* form A*,,...,A*,, where A% separates s; from rest

Each edge in A* appears in
= Thus
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Multiway cut proof
" JE
m Thus, for OPT cut A* we have that:

m Each A* separates s; from rest, thus

m But, can do better, because
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General solutions to

. &ambinatorial problems

= Nonlinear optimization
Extremely general
NP-Hard to solve

m  Covex problems:
Special problem structure
General efficient solution algorithms
Applies to many continuous problems

m  Combinatorial optimization
Integer programming
= Very general, but NP-hard
Convex relaxations
= Approximation guarantees for many problems
= Usually solution is problem specific
Though there are general principles

m |s there general problem structure in combinatorial problems?
Analogously to convexity?
= Recognize structure and use general algorithms?
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Water distribution networks

Chlorine

.. . . . could deliberately
» Water distribution in a city — introduce pathogen

very complex system

" o ﬁ'ﬁ
>

» Pathogens in water can affect
thousands (or millions) of people

o Currently: Add chlorine to the
source and hope for the best

Simulator from EPA
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Monitoring water networks

[Krause, Leskovec, G., Faloutsos, VanBriesen ‘08]

| m
m Contamination Or arinkKing water

could affect millions of people

7

Sensd

Simulator from EPA Hach Sensor
» Place sensors to detect contaminations ~ ~S51 4K

» “Battle of the Water Sensor Networks” competition

Where should we place sensors
to detect contaminations quickly ? 9
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Model-based sensing
" S

m Model predicts impact of contaminations
For water networks: Water flow simulator from EPA

For lake monitoring: Learn probabilistic models from data (later)
"wb & §aghssubset AC V compute “sensing quality” F(A)

High impact location

Contamination
b"; locatia

i N Sens

o impa

sir SetVofall early
network junctions

Low sensing quality F(A)=0.01

High sensing quality F(A) = 0.9
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Sensor placement
“ JEE
» Given: finite set V of locations, sensing quality F
o Want:  A'CV such that

A" = argmax F'(A) ~
|A|<k e-'>
Typically NP-hard! 1@,
4, ‘L'Il 5% s
51 « o Sl
Greedy algorithm: \.‘.‘i S,"_ ,r
Start with A =0 ; "
Fori=1tok

s* := argmax, F(AU {s})
A:=AU{s*}

How well can this simple heuristic do?
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Performance of greedy algorithm
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Number of sensors placed

Greedy score empirically close to optimal. Why?
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Key property: Diminishing returns
" S

Placement A={S,, S,} Placement B ={S,, S,, S5, S,}
4 4
’ L‘ﬁ'ﬁ?‘ g . ) AL, |/ “:’?ﬁ“é‘f . ’
L=y “Adding S s I# Adding S
will help a lot! New " doesn’t help much
sensor S’

Theorem [krause, Leskovec, G., Faloutsos, VanBriesen '08]’
Sensing quality F(A) in water networks is submodular!

Submodularity
* JEEE——
m Formalizes notion of diminishing returns

m Equivalent definition:
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What do we get from
- aadgmodularity

m Submodularity is a general property of set functions

m Submodular function can be minimized in polynomial
time!

m But our problem is
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Another example...
" JEE
m Maximum cover
Ground elements

Set of sets
Pick k sets, maximize number of covered elements
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Maximizing submodular

. functions — cardinality constraint

m Given
Submodular function
Normalized
Non-decreasing

m  Greedy algorithm guarantees

m Can you get better algorithm?
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Online bounds
" S

m  Submodularity provides bounds on the quality of the solution A
obtained by any algorithm
For normalized, non-decreasing functions

m Advantage of adding elements to A:
m Bound on the quality of any set A:

m Tighter bound:
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Battle of the Water Sensor Networks Competition

*

Real metropolitan area network (12,527 nodes)

Water flow simulator provided by EPA

3.6 million contamination events

Multiple objectives: Detection time, affected population, ...
Place sensors that detect well “on average”
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BWSN Competition results
" JEE
m 13 participants
m Performance measured in 30 different criteria

G: Genetic algorithm

H: Other heuristic E: “Exact” method (MIP)
4 30
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What was the trick?
» SEEN——

Simulated all 3.6M contaminations on 2 weeks / 40 processors

152 GB data on disk, 16 GB in main memory (compressed)

=» Very accurate sensing quality ©
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Exhaustive search

/ (All subsets) '

Naive
Greedy\}‘
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Lazy Greedy |
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Number of sensors selected

Very slow evaluation of F(A) ®

30 hours/20 sensors
6 weeks for all
30 settings ®

Qbmodularity

to the rescue:

Using “lazy evaluations”:
1 hour/20 sensors

Done after 2 days! ©

Lazy evaluations
“ J

m Naive implementation of greedy:

m Advantage of an element never increases:
Advantage:
What if you already picked a larger set:

= Set after picking i elements: A;

m Lazy evaluations:

Keep a priority queue over elements:
= Initialize with advantage of each element

Pick element on top, recompute priority
If element remains on top
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Other maximization settings
“ JEE

m Non-monotone submodular functions
m Non-unit costs

m Complex constraints
Paths
Spanning trees

m Worst-case optimization
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