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Most probable explanation 
(MPE) in a Markov network 
  Markov net: 

  Most probable explanation: 

  In general, NP-complete problem, and hard to 
approximate 
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MPE for attractive MNs – 2 classes 
  Attractive MN: 

  E.g., image classification 

  Finding most probable explanation  

  Can be solved by  
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MPE, Attractive MNs, k classes 
  MPE for k classes: 

  Multiway cut: 
  Graph G, edge weights wij 
  Finding minimum cut, separate s1,…,sk 

  Multiway cut problem is 
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Multiway cut – combinatorial algorithm 

  Very simple alg: 
  For each i=1…k 

  Find cut Ci that separates si from rest  
  Discard   argmaxi w(Ci), return union of rest  

  Algorithm achieves 2-2/k approximation 
  OPT cut A* separates graph into k components 

 No advantage in more than k 

  From A* form A*1,…,A*k, where A*i separates si from rest 

  Each edge in A* appears in  
 Thus 
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Multiway cut proof 
  Thus, for OPT cut A* we have that: 

  Each A*i separates si from rest, thus 

  But, can do better, because 
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General solutions to 
combinatorial problems 

  Nonlinear optimization 
  Extremely general 
  NP-Hard to solve 

  Covex problems: 
  Special problem structure 
  General efficient solution algorithms 
  Applies to many continuous problems 

  Combinatorial optimization 
  Integer programming 

 Very general, but NP-hard 

  Convex relaxations 
  Approximation guarantees for many problems 
  Usually solution is problem specific 

  Though there are general principles 

  Is there general problem structure in combinatorial problems? 
  Analogously to convexity? 

  Recognize structure and use general algorithms? 
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Water distribution networks 

Simulator from EPA 


   Water distribution in a city →  
very complex system 


   Pathogens in water can affect 
thousands (or millions) of people 


   Currently: Add chlorine to the  
source and hope for the best 

Chlorine 

ATTACK! 
could deliberately 
introduce pathogen 
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Monitoring water networks 
[Krause, Leskovec, G., Faloutsos, VanBriesen ‘08] 

  Contamination of drinking water 
could affect millions of people 


  Place sensors to detect contaminations 

   “Battle of the Water Sensor Networks” competition 

Where should we place sensors  
to detect contamina8ons quickly ? 

Sensors 

Simulator from EPA  Hach Sensor 
~$14K 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Model-based sensing 

  Model predicts impact of contaminations 
  For water networks: Water flow simulator from EPA 
  For lake monitoring: Learn probabilistic models from data (later) 

  For each subset A ⊆ V compute “sensing quality” F(A) 

S2 

S3 

S4 S1 S2 

S3 

S4 

S1 

High sensing quality F(A) = 0.9 Low sensing quality F(A)=0.01 

Model predicts 
High impact 

Medium impact 
location 

Low impact 
location 

Sensor reduces 
impact through 
early detection! 

S1 

Contamination 

Set V of all  
network junctions 
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Sensor placement 


   Given: finite set V of locations, sensing quality F 

   Want:       A*⊆ V such that 
   

    

         Typically NP-hard! 
  

 How well can this simple heuristic do? 

S1 

S2 

S3 

S4 

S5 

S6 
Greedy algorithm: 

Start with A =Ø ; 
For i = 1 to k 

s* := argmaxs F(A ∪ {s}) 
A := A ∪ {s*} 
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Performance of greedy algorithm 

Greedy score empirically close to optimal. Why? 

Small subset of  
Water networks  
data 

Greedy 

Optimal 
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Number of sensors placed 
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S2 S3 

S4 
S1 

Key property: Diminishing returns 

S2 

S1 

S’ 

Placement A = {S1, S2}  Placement B = {S1, S2, S3, S4} 

Adding S’  
will help a lot! 

Adding S’  
doesn’t help much New  

sensor S’ 

Theorem [Krause, Leskovec, G., Faloutsos, VanBriesen ’08]: 
Sensing quality F(A) in water networks is submodular!  
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Submodularity 

  Formalizes notion of diminishing returns 

  Equivalent definition: 
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What do we get from 
submodularity 

  Submodularity is a general property of set functions 

  Submodular function can be minimized in polynomial 
time! 

  But our problem is  
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Another example… 

  Maximum cover 
 Ground elements 
 Set of sets 
 Pick k sets, maximize number of covered elements 
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Maximizing submodular 
functions – cardinality constraint 

  Given 
  Submodular function  
  Normalized 
  Non-decreasing 

  Greedy algorithm guarantees 

  Can you get better algorithm? 
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Online bounds 
  Submodularity provides bounds on the quality of the solution A 

obtained by any algorithm 
  For normalized, non-decreasing functions 

  Advantage of adding elements to A: 

  Bound on the quality of any set A: 

  Tighter bound: 
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Battle of the Water Sensor Networks Competition 

  Real metropolitan area network (12,527 nodes) 
  Water flow simulator provided by EPA 
  3.6 million contamination events 
  Multiple objectives: Detection time, affected population, … 
  Place sensors that detect well “on average” 
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BWSN Competition results 

  13 participants 
  Performance measured in 30 different criteria 
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G: Genetic algorithm 

H: Other heuristic 

D: Domain knowledge 

E: “Exact” method (MIP) 
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Simulated all                                          on 2 weeks / 40 processors 

152 GB data on disk 
 Very accurate sensing quality  

, 16 GB in main memory (compressed) 

Using “lazy evalua8ons”: 
1 hour/20 sensors 
Done a]er 2 days!  

30 hours/20 sensors 

6 weeks for all 
30 se^ngs  

3.6M contamina8ons 

Very slow evalua8on of F(A)  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Exhaustive search 
(All subsets) 

Naive 
Greedy 

      ubmodularity  
   to the rescue: 

What was the trick? 
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Lazy Greedy 

Lazy evaluations 
  Naïve implementation of greedy: 

  Advantage of an element never increases: 
  Advantage:  
  What if you already picked a larger set: 

 Set after picking i elements: Ai 

  Lazy evaluations: 
  Keep a priority queue over elements: 

 Initialize with advantage of each element  

  Pick element on top, recompute priority 
  If element remains on top 
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Other maximization settings 

  Non-monotone submodular functions 

  Non-unit costs 

  Complex constraints 
 Paths 
 Spanning trees 

  Worst-case optimization  
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