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MPE for attractive MNs — 2 classes
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= Multiway cut:

Graph G, edge weights w;
Finding minimum cut, separate s,,...,S,
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m Multiway cut problem is
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Multiway cut — combinatorial algorithm
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= Very simple alg: & kY

For each i=1...k <
= Find cut C; that separates s; from rest

< —_—
Discard argmax; w(C;), return union of rest 53
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m Algorithm achieves 2-2/k approximation
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OPT cut A* separates graph into k components

= No advantage in more than k
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Multiway cut proof
" JEE

m Thus, for OPT cut A* we have that:
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General solutions to

. &aainatorial problems

Ilnear optimization
Extremely general
NP-Hard to solve

= Covex problems: /? 6 £(x) +(1-6 -@(‘0) f(e;u(r—eg)

Special problem structure

cial problem structur
General efficient solution algorithms
Applies to many continuous problems

= Combinatorial optimization

Integer programming
= Very general, but NP-hard

Convex relaxations
-onvex relaxa ¢ ay
= Approximation guarantees for many problems '7 ‘7-/ 5
= Usually solution is problem sEecific
Though there are general principles Gn 'I'V\l /5«/
—_——m—— T (/(A«,
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m Is there general ure in combinatorial problems?
Analogously to convexity? -
= Recognize structure and use general algorithms?
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Water distribution networks

Ch Iorlne
"
ATTACK!
. . . i . could deliberately
» Water distribution in a city — introduce pathoger
very complex system &\

* Pathogens in water can affect
thousands (or millions) of people

¢ Currently: Add chlorine to the
source and hope for the best

éimulator from EPA
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Monitoring water networks

[Krause, Leskovec, G., Faloutsos, VanBriesen ‘08]

| H
m Contamination of drinking water

could affect millions of people

éimU|at0r from EPA ) ] Hach Sensor
» Place sensors to detect contaminations ~ ~$14K

» “Battle of the Water Sensor Networks” competition
LWhere should we place sensors

NJ

to detect contaminations quickly

Model-based sensing

[
m Model predicts impact of contaminations
[ For water networks: Water flow simulator from EPA
1 For lake monitoring: Learn probabilistic models from data (later)
= For IC%aaq(gssubset Ac va:i(r)nrglagyte sensing quality” F(A)

High impact location
Contamination

. Mediuym impact
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..High sensing quali(y F(A) = O.9> Low sensing quality(F(A):w “




Sensor placement
* J

@ Given: finite set V of locations, sensing quality F
¢ Want: A’c V such that

A" = argmax F(A) ¢ A
_ A<k = -
Typically NP-hard! % 33' s
‘L-I l‘, "r t"".‘s = :_rs ]
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Greedy algorithm: i ’;6‘. -
Start with A =@4 c N
Fori=1tok “h!-
§*:=argmax, F(A v {s})
A=AuUfs* —

How well can this simple heuristic do?
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Performance of greedy algorithm
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Greedy score empirically close to optimal. Why?
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Key property: Diminishing returns
SwEnu)dlhbu—J'l:]
" SN

Placement A = {S;, S,} Placement B ={S;, S,, S5, S,}

Adding S’
will help a lot! New

sensor S’

doesn’t help much

Theorem [Krause, Leskovec, G., Faloutsos, VanBriesen '08].

Sensing quality F(A) in water networks is submodular!
>

Juprr ~oAmler Flaos) ~£(a) <
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Submodularity /

modale £ (Auvix)) ~F(4)- FIRY$G) -+
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= F(A):Az F4;) (
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m Formalizes notion of diminishing returns *
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m Equivalent definition:
F4B F(4) + F(®) 7 FIAUD) +HANB)

©2008 Carlos Guestrin 14




What do we get from 2\ )

0 27
. ,submodularity et

Y€ Hevk
m Submodularity is a general property of set functions

m Submodular function can be minimized in polynomial
minimized In polynor

_time! = »
- 7S Submatula-
min F@ poLyFime
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m But our problem is mok (4 .
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Another example...
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= Maximum cover i 2§
Ground elements vé V SEA NS
Set of sets s;cV

Pick k sets, maximize number of covered elements
oy = = L(veys
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Maximizing submodular

. dypctions — cardinality constraint

. <-9.)
= Given ( ) meak. Cogv
Submodular function F A —

Normalized £ (¢g) =0
Non-decreasing (Ax <F@®R) ACB

m Greedy algorithm guarantees
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Online bounds
= JEE

m Submodularity provides bounds on the quality of the solution A
obtained by any algorithm
For normalized, non-decreasing functions

m Advantage of adding elements to A:
m Bound on the quality of any set A:

m Tighter bound:
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Battle of the Water Sensor Networks Competition

Real metropolitan area network (12,527 nodes)

Water flow simulator provided by EPA

3.6 million contamination events

Multiple objectives: Detection time, affected population, ...
Place sensors that detect well “on average”
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BWSN Competition results

0000

m 13 participants

m Performance measured in 30 different criteria
G: Genetic algorithm

H: Other heuristic E: “Exact” method (MIP)
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What was the trick?

" JE
Simulated alB.6M contaminations on 2 weeks / 40 processors
152 GB data on diskd6 GB in main memory (compressed)
=» Very accurate sensing quality © Very slow evaluation of F(A) &

30 hours/20 sensors

ﬁ _]

% 300 Exhaustive search ‘."'/r 6 WeekS fOF a”
£ .~ (All subsets) .

E » 30 settings ®
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E reedy > .
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£ o ez Greedy to the rescue:
R I S

1 23456 78 910 USing lazyevaluations™
Number of sensors selected 1 hour/20 sensors
Done after 2 days!n@
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Lazy evaluations
" JE

m Naive implementation of greedy:

m Advantage of an element never increases:
Advantage:

What if you already picked a larger set:
= Set after picking i elements: A

m Lazy evaluations:

Keep a priority queue over elements:
= |Initialize with advantage of each element

Pick element on top, recompute priority
If element remains on top
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Other maximization settings
* JJE

m Non-monotone submodular functions
m Non-unit costs

m Complex constraints
Paths
Spanning trees

m Worst-case optimization
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