

Bit length example

Bit length example

Bit length example

What's a subgradient?

Subgradients for SVMs

- $min_w L(w) = ||w||^2 + (C/m)\sum_i h(-y_i x_i^T w)$
- $h(z) = max \{0, 1+z\}$
- Subgradient of h(z):

• Subgradient of L(w) wrt w:

$$\partial L(\omega) = 2\omega + \frac{c}{m} \gtrsim \partial h(-y; x_i^T \omega) \cdot (-y; x_i)$$

Subgradient descent

Subgradient descent

Start w/ Xo

• While not tired:

$$g_t = (\text{extincte of}) \underbrace{\partial f(x_t)}_{X_{t+1}} = \underbrace{x_t - \eta_t g_t}_{X_{t+1}} = \underbrace{\chi_t - \eta_t g_t}_{X_{t+1}}$$
 $\chi_{t+1} = \underbrace{\chi_t - \eta_t g_t}_{X_{t+1}}$
 $\chi_{t+1} = \underbrace{\chi_t - \eta_t g_t}_{X_{t+1}}$

Subgradient example

min L(w) = h(-
$$z_1^T w$$
) + h(- $z_2^T w$) + h(- $z_3^T w$)
s.t. $||w||^2 \le 5$

Subgradient convergence

- Suppose $||\partial L(x)||^2 \le C$ for all x in F
- Suppose $L(x_t) \ge L(x^*) + \varepsilon$

Setting step size

- If we knew ε , could set good step size η
- But we don't! So:

• Typical choices:

Stochastic subgradient

- In SVM (and many other ML problems), L(w) contains big sum of simple terms min_w L(w) = ||w||^2 + (C/m)∑_ih(-y_ix_i^Tw) ∂L(w) =
- Approximate sum by sampling terms

$$\partial_{i} = \partial_{S} = E(-\partial_{S}^{T}(x-x^{*})) = S \text{ random, } |S| = k: Var(\eta \partial_{S}) \le$$

When do we stop?

- Feasible region diameter ||F||
 ≥ f(x*) ≥
- Typical ML generalization bound:
 E(L(new ex, w)) ≤ L(train, w) +