

Null space

- Equality constraints:
- Given one solution: \hat{X} : $\frac{A\hat{X}=b}{\hat{X}=\hat{X}+g}$ Find other solutions: $A\hat{X}=b$ $A(\hat{X}+y)=b$ $A(\hat{X}+y)=b$ $A(\hat{X}+y)=b$

Eliminating linear equalities

■ Equivalent optimization problems:

$$y \in F(X)$$

 $Ax = b$
 $x \in \mathbb{R}^n$

min
$$f(\hat{X} + Fz)$$

$$\frac{2}{2} = \frac{2}{2} ||\hat{X}||^4$$

$$\hat{X} \in \text{any*} \quad \text{point in } Ax=6$$

■ Find basis for null space of A (linear algebra)

- □ Solve unconstrained problem
- A concern... e.g., A has structure Frag lose structure

Solving quadratic problems with equality constraints

■ KKT condition x* solution iff $L(X,Y) = \frac{1}{2} x^{T} X + \frac{1}{2} x^{T} Y + \frac{1}{2} x^{T} X + \frac{1}$

Rewriting:
$$(\dot{x},\dot{v})$$

$$\begin{bmatrix} P & A^{\dagger} \\ A & o \end{bmatrix} \begin{bmatrix} X^{*} \\ V^{*} \end{bmatrix} = \begin{bmatrix} -4 \\ 5 \end{bmatrix}$$

- Solve linear system:
 - □ Any solution is OPT (\(\dagger \)
 - ☐ If no solution, unbounded

©2008 Carlos Guestri

Newton's method with equality constraints

- Quadratic approximation: $f(x+\Delta x) = f(x) + \underbrace{\nabla f(x)}_{\Delta} + \underbrace{\nabla}_{\Delta} + \underbrace{\nabla}$
- Start feasible, stay feasible: $x^{(i)} \in \text{Feesible}$ $A \times (x^{(i)}) = x^{(i)} = x$
- KKT:
- Solve linear system: $\begin{bmatrix} O^2 f(x) & A^T \\ A & o \end{bmatrix} \begin{bmatrix} \Delta X_{ne} \\ W \end{bmatrix} = \begin{bmatrix} -\nabla f \alpha \\ 0 \end{bmatrix}$ Lagrange multiplies for
- Move accordingly: $X \leftarrow X + f \triangle X_{1}$

©2008 Carlos Guestrin

General convex problem

General (differentiable) convex problem:

min
$$f_{\bullet}(x)$$
 $\forall i=1...k$ $f_{i}(x) \leq 0$

Ax ≥ 6

Equivalent problem with only equality constraints:

$$\sum_{x \in \mathcal{X}} f_{x}(x) + \sum_{x \in \mathcal{X}} I_{x}(f_{x}(x))$$

not differentiable!!

Approximating the indicator

- - □ Correct as t → ∞
 - Differentiable $\frac{\partial (-\frac{1}{\xi} \log (-u))}{\partial u} = \frac{1}{\xi}$

Approximate optimization problem:

■ Convex, if f_i are convex, because

Log-barrier function

■ Solve log-barrier problem with parameter t:

we log-parties problem with parameter
$$t$$
:

 $min + f_{o}(x) + \phi(x)$
 $f(x) = -\sum_{i} \log(f_{i}(x))$
 $f(x) = -\sum_{i} \log(f_{i}(x))$

Nice property:

Gradient: $\nabla(t f_0(x) + \varphi(x)) = t \nabla f_0(x) + \nabla \varphi(x)$ Hessian: $t \nabla^2 f(x) + \nabla^2 \varphi(x)$

Force field interpretation

Log-barrier function: $f = f \circ (x) + \phi(x)$

$$D\Phi(x) = \sum_{i} - \frac{\nabla f_i(x)}{\nabla f_i(x)}$$

Central path

For each t, solve:

 $x'(t) \in \underset{x}{\operatorname{argmin}} (f_{x}(x) + \phi(x))$

- As t goes to infinity, approach solution of original problem
- Problem becomes badly conditioned for very large t, so ezus fare make small stens on

Barrier method

- Given:
 - □ Feasible x^(*)
 - □ Initial t>0

- Pepeat

 | Centering:
 | Starting from x) compute: \(\frac{\(\frac{\(\)}{\(\)}\) = cymin \(\frac{\(\)}{\(\)}\) \(\frac{\(\)}{\(\)}\) \(\)

 - \square Update: x:= $\times^*(t)$
 - □ Stopping criterion: When t is "large enough"

When is t large enough???

■ Thus:
$$f_o(x^*(t)) - p^* \leq \kappa_t$$

■ Stopping criterion
$$k/t \le \varepsilon$$
 $(\chi^*(t), v^*(t))$
 $\chi^*(t)$
 $\chi^*(t)$

Centering step not (necessarily) exact

• Finding exact point on central path can take a while...

$$X^{*}(f) = \frac{1}{2} - \frac{1}{2} \sin f + \frac{1}{2} (x) + \varphi(x)$$

$$Ax = 0$$

- Usually:
 - □ Run a few steps of Newton to recenter
 - □ Then increase t
 - □ (problem: duality gap result no longer holds!!)
- Most often use primal-dual method
 - □ Equivalent to Newton's method on Lagrangian

See book for details

What about feasible starting point???

Phase I: Solve feasibility problem, e.g.,

□ Starting from feasible point:
$$A\widehat{X} = S$$
, $SLF \widehat{S} = \max_{x} f(\widehat{X})$

- □ (don't solve to optimality!!! Stop when s<0)
- □ When feasible region "not too small", find point very quickly
- Phase II: use feasible point from Phase I as starting point for Newton's or other method
- Also possible:
 - □ Change Phase I to guarantee starting point (near) central path
 - □ Combine Phase Land Phase II

©2008 Carlos Guestrir