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Today… 

  Thus far, focused on formulating convex problems 
  Today: How do we solve them! 
 Plan: 200 pages of book (Part III) in one lecture 

  Focus: 
 Convex functions 
  Twice differentiable 

  Overview 
 Unconstrained 
 Equality constraints 
 General convex constraints 

    
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Solving unconstrained problems 

 Unconstrained problem 
 Sequence of points:  

 Exactly: Stop when 

 Approximately: Stop when  
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Descent methods 

  x(k+1) = x(k) + t(k) Δx(k) 
 Want:  

  From convexity:  

  Thus 

  Therefore, pick Δx such that:  
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∇f(x(k))T (y − x(k)) ≥ 0
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Generic descent algorithm 

  Start from some x in dom f 
  Repeat 

 Determine descent direction Δx 
  Line search to choose step size t 
 Update: x  x + t Δx 

  Until stopping criterion 

  Good stopping criterion: 

  In gradient descent, Δx =  
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Exact line search 

  Find best step size t: 

  Problem is 
    
 Sometimes easy to solve in closed form 
 Other times can take a long time… 
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Backtracking line search 

  From convexity,  
lower bound on f(x+Δx): 

 Can’t really hope to achieve  
ideal decrease of  

  Instead pick some α 
 And achieve:  

  Choosing t: 
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Backtracking line search alg. 
  Given 

  Point x 
  Descent direction Δx 
  α 
  β 

  t=1  
  While f(x+Δx)> 

  t := βt 

  Boyd & Vandenberghe: pick  
  α in [0.01,0.3] 
  β in [0.1,0.8]  

8 ©2008 Carlos Guestrin 



5 

Analysis of gradient descent 
  (details in book…) 
  Linear convergence rate: 

  f(x(k)) – p* ≤ ck (f(x(0)) – p*) 

  Geometrically decreasing 
  c<1 
  In log plot, error decreases below a line… 

  Rate c related to “condition number” of Hessian 
  c ≅ 1 – 1/”condition number” 

  For quadratic problem: 
  Condition number is λmax/λmin 

  Gradient descent bad when condition number is large 
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Observations about descent 
algorithms 

  Observe linear 
convergence in practice 

  Boyd & Vandenberghe: 
difference often not 
significant in large 
dimensional problems 
 May not be worth 

implementing exact LS when 
complex 

  Condition number can 
greatly affect convergence 

10 ©2008 Carlos Guestrin 

R2 R100 



6 

Solving quadratic problems is easy 

  Quadratic problem: 

  Solving equivalent to solving linear system: 

  If system has at least one solution: done! 

  If system has no solutions: problem is unbounded 

  Usually don’t have simple quadratic problems, but… 
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Newton’s method 

  Second order Taylor expansion: 

  Descent direction, solution to linear system 

  Nice property: 
 We wanted: 

 We get:  
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Newton’s method – alg. 
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  Start from some x in dom f 
  Repeat 

 Determine descent direction Δxnt 
    

  Line search to choose step size t 
 Update: x  x + t Δxnt 

  Until stopping criterion 

  Good stopping criterion: 
1
2
∇f(x)T∇2f(x)−1∇f(x) ≤ ε

Convergence analysis for Newton’s 

  (Really see book for details.) 

  Two phases: 
 Gradient is large 

  Damped Newton Phase 
  Step size t<1 

  Linear convergence 

 Gradient is small 
  Pure Newton Phase 

  Step size t=1 
  Quadratic convergence 

  c^(2k) 
  Only lasts 6 steps 
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Summary on Newton’s 
  Converges in very few iterations, especially in 

quadratic phase 
  Invariant to choice of coordinates or affine scaling  

  Very useful property! 
  Performs well with problem size, not very sensitive to 

parameter choices 
  Can prove even cooler things when function is 

smooth 
  E.g., “self-concordance,” see book 

  Many implementation tricks (see book) 

  But… 
  Forming and storing Hessian is quadratic 

 Can be prohibitive 

  Solving linear system can be really expensive 
  Use quasi-Newton methods 
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Solving problems with equality 
constraints 

 Equality constraints: 

 Seems very hard 
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Null space 

  Equality constraints: 

  Given one solution: 

  Find other solutions: 

  Since Null Space is a linear subspace: 
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Eliminating linear equalities 

  Equivalent optimization problems: 

  Find basis for null space of A (linear algebra) 
 Solve unconstrained problem 

  A concern… 
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Solving quadratic problems with 
equality constraints 

  Quadratic problem with equality constraints: 

  KKT condition x* solution iff 

  Rewriting: 

  Solve linear system: 
  Any solution is OPT 
  If no solution, unbounded 
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Newton’s method with equality 
constraints 
  Quadratic approximation: 

  Start feasible, stay feasible: 

  KKT: 

  Solve linear system: 

  Move accordingly:  
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General convex problem 

 General (differentiable) convex problem: 

 Equivalent problem with only equality constraints: 
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Approximating the indicator 

  Approximate indicator: 
    
 Correct as t 
 Differentiable 

  Approximate optimization problem: 

  Convex, if fi are convex, because 
    
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Log-barrier function 

 Solve log-barrier problem with parameter t: 

 Nice property: 
 Gradient: 

 Hessian:  
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Force field interpretation 

  Log-barrier function: 

  Descending gradient of log barrier 

  Each term: 
 Want fi(x)≤0 
 As we approach 0- :  
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Central path 

  For each t, solve: 

  As t goes to infinity, approach solution of original problem 

  Problem becomes badly conditioned for very large t, so 
want to stay close to path and make small steps on t 
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Barrier method 

 Given: 
 Feasible x 
 Initial t>0 
 µ>1 

 Repeat 
 Centering: 

  Starting from x, compute: 

 Update:  x:= 
 Stopping criterion: When t is “large enough” 
 Increase barrier param:  t:= 
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When is t large enough??? 

 Solve centering step: 

  There exists values for dual vars (See book), 
such that duality gap ≤ k/t 

  Thus:  

 Stopping criterion k/t ≤ ε 
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Centering step not (necessarily) exact 

  Finding exact point on central path can take a while… 

  Usually: 
 Run a few steps of Newton to recenter 
  Then increase t 
  (problem: duality gap result no longer holds!!) 

  Most often use primal-dual method 
 Equivalent to Newton’s method on Lagrangian 

    

  See book for details 
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What about feasible starting point??? 

  Phase I: Solve feasibility problem, e.g., 

  Starting from feasible point: 

  (don’t solve to optimality!!! Stop when s<0) 
  When feasible region “not too small”, find point very quickly 

  Phase II: use feasible point from Phase I as starting point for 
Newton’s or other method 

  Also possible: 
  Change Phase I to guarantee starting point (near) central path  
  Combine Phase I and Phase II 
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