

Today... Thus far, focused on formulating convex problems | Today: How do we solve them! | Plan: 200 pages of book (Part III) in one lecture Focus: | Convex functions | Twice differentiable Overview | Unconstrained min fo(x) | Equality constraints Ax = b | General convex constraints fi(x) ≤ 0 Cood luck ((

Solving unconstrained problems

- Sequence of points: $\chi^{(0)}_{,\chi$
- Exactly: Stop when $f(\chi^{(k)}) = P^{k}$
- Approximately: Stop when f(x(*)) ¬ P* ≤ €

Descent methods

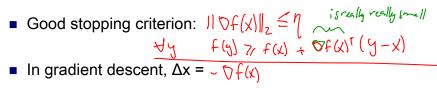
- $\underline{\mathbf{x}}^{(k+1)} = \mathbf{x}^{(k)} + \underline{\mathbf{t}}^{(k)} \Delta \mathbf{x}^{(k)} \leftarrow \text{descent direction}$ □ Want: $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)}) \qquad \text{unless } f(\mathbf{x}^{(k)}) = \mathcal{P}^*$
- From convexity: $f(y) > f(x^{(n)}) + Of(x^{(n)})^{T} (y x^{(n)})$

- Thus $\nabla f(x^{(k)})^T(y-x^{(k)}) \geq 0$ \Rightarrow $f(y) > f(x^{(k)})$

■ Therefore, pick
$$\Delta x$$
 such that:
 $\Delta x = y - x^{(k)}$
 $\nabla \neq (x^{(k)})^{\tau} \Delta x < 0$

Generic descent algorithm

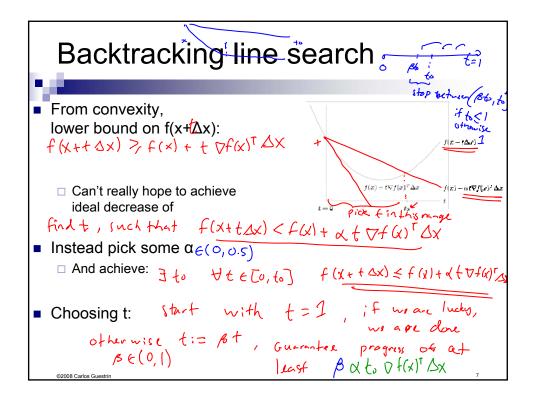
- Start from some x in dom f
- Repeat
 - \Box Determine descent direction Δx
 - □ Line search to choose step size t
 - □ Update: x ← x + t Δx
- Until stopping criterion

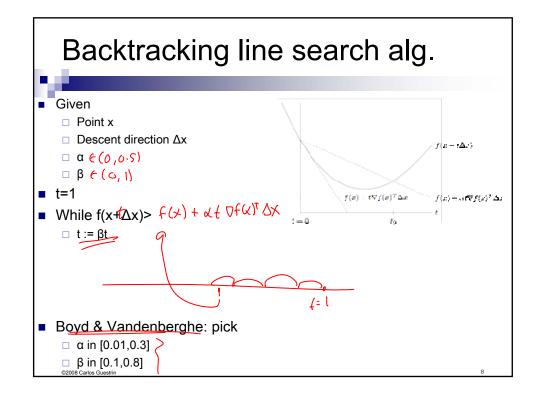


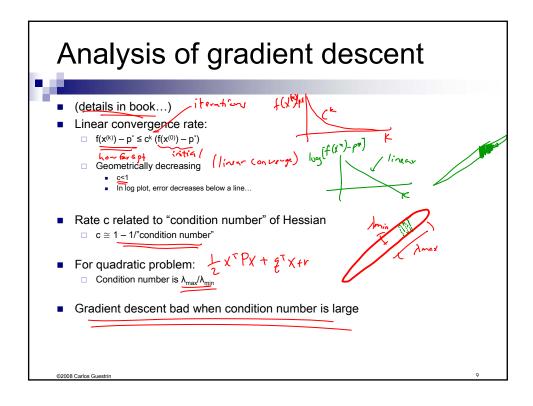
Exact line search

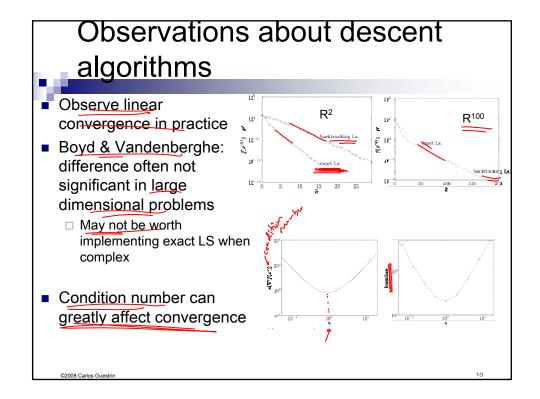
$$t = arg_s$$
 $f(x + s \Delta x)$

- Problem is
 - $g(s) = F(X + S \Delta X)$ is convex !!
 - □ Sometimes easy to solve in closed form
 - □ Other times can take a long time...









Solving quadratic problems is easy

Solving equivalent to solving linear system:

- ☐ If system has at least one solution: done!
- ☐ If system has no solutions: problem is unbounded PX=- having no solutions
- Usually don't have simple quadratic problems, but...

Newton's method

Second order Taylor expansion:

Second order Taylor expansion.
$$f(x+\Delta x) \approx \hat{f}(x+\Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$$

$$\nabla^2 f(x) = f(x) + \frac{\partial f(x)}{\partial x_1 \partial x_2}$$

$$(x - \Delta x_0, f(x))$$

Descent direction, solution to linear system

$$O\hat{f}(x+\Delta x)=0$$
 =) $O^2f(x)\Delta x = -\nabla f(x)$
Solve for $\Delta x \neq x$

- Nice property:
 - □ We wanted: $\nabla f(x)^{\tau} \Delta x < 0$ Plug
 - We get: Suppose $\nabla^2 f(x)$ invortible \Rightarrow $\Delta x \cdot \eta_0 = -\nabla^2 f(x) = -\nabla^2 f($

Newton's method – alg.

- Start from some x in dom f
- Repeat
 - \Box Determine descent direction Δx_{nt}

- □ **Line search** to choose step size t
- □ Update: $x \leftarrow x + t \Delta x_{nt}$
- Until stopping criterion
- Good stopping criterion:

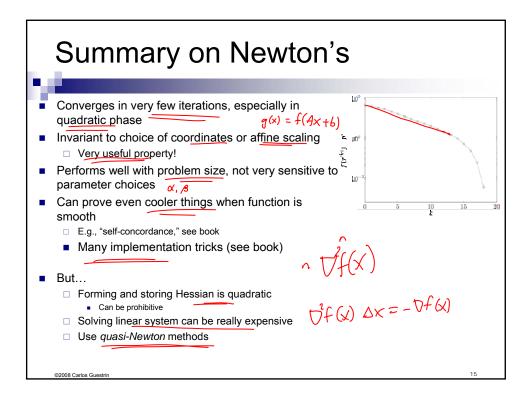
$$\frac{1}{2} \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \leq \epsilon$$

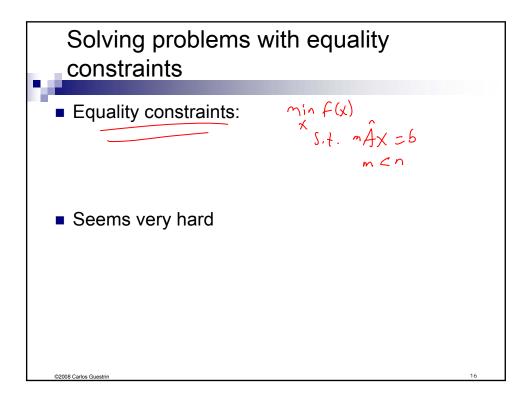
$$f(x + \delta x) = f(x) + \nabla f(x) + \delta x \qquad \text{by convexity}$$

Convergence analysis for Newton's

- (Really see book for details.)
- 109 (f(x))-pit)

- Two phases:
 - □ Gradient is large $\|\nabla f(x)\|_2 > \eta$
 - Damped Newton Phase
 - Step size t<1
 - Linear convergence
 - \Box Gradient is small $\|\nabla f(x)\|_2 < \eta$
 - Pure Newton Phase Step size t=1
 - Quadratic convergence
 - □ c[^](2^k)
 - Only lasts 6 steps





Null space

- Equality constraints:
- Given one solution:
- Find other solutions:
- Since Null Space is a linear subspace:

©2008 Carlos Guestrin

17

Eliminating linear equalities

- Equivalent optimization problems:
- Find basis for null space of A (linear algebra)
 - □ Solve unconstrained problem
- A concern...

©2008 Carlos Guestrin

Solving quadratic problems with equality constraints

- Quadratic problem with equality constraints:
- KKT condition x* solution iff
- Rewriting:
- Solve linear system:
 - □ Any solution is OPT
 - □ If no solution, unbounded

©2008 Carlos Guestrin

19

Newton's method with equality constraints

- Quadratic approximation:
- Start feasible, stay feasible:
- KKT:
- Solve linear system:
- Move accordingly:

©2008 Carlos Guestrin

General convex problem

- General (differentiable) convex problem:
- Equivalent problem with only equality constraints:

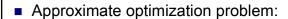
©2008 Carlos Guestrir

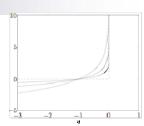
21

Approximating the indicator

- Approximate indicator:

 - Correct as t
 - Differentiable





■ Convex, if f_i are convex, because

П

©2008 Carlos Guestrin

Log-barrier function

■ Solve log-barrier problem with parameter t:

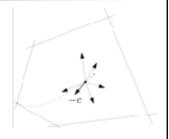
- Nice property:
 - ☐ Gradient:
 - ☐ Hessian:

©2008 Carlos Guestrir

23

Force field interpretation

- Log-barrier function:
- Descending gradient of log barrier



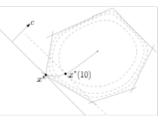
- Each term:
 - □ Want f_i(x)≤0
 - \square As we approach $0_{\underline{.}}$:

©2008 Carlos Guestrin

2.4

Central path

■ For each t, solve:



- As t goes to infinity, approach solution of original problem
- Problem becomes badly conditioned for very large t, so

Barrier method

- Given:
 - □ Feasible x
 - □ Initial t>0
 - □ µ>1
- Repeat
 - □ Centering:
 - Starting from x, compute:
 - □ Update: x:=
 - □ Stopping criterion: When t is "large enough"
 - □ Increase barrier param: t:=

©2008 Carlos Guestrin

When is t large enough???

- Solve centering step:
- There exists values for dual vars (See book), such that duality gap ≤ k/t
- Thus:
- Stopping criterion k/t ≤ ε

©2008 Carlos Guestrin

27

Centering step not (necessarily) exact

- Finding exact point on central path can take a while...
- Usually:
 - □ Run a few steps of Newton to recenter
 - □ Then increase t
 - □ (problem: duality gap result no longer holds!!)
- Most often use primal-dual method
 - ☐ Equivalent to Newton's method on Lagrangian

See book for details

What about feasible starting point???

- Phase I: Solve feasibility problem, e.g.,
 - □ Starting from feasible point:
 - □ (don't solve to optimality!!! Stop when s<0)
 - □ When feasible region "not too small", find point very quickly
- Phase II: use feasible point from Phase I as starting point for Newton's or other method
- Also possible:
 - □ Change Phase I to guarantee starting point (near) central path
 - □ Combine Phase I and Phase II

2008 Carlos Guestrin