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Today...

" JE
m Thus far, focused on formulating convex problems

Today: How do we solve them!
Plan: 200 pages of book (Part I1l) in one lecture

R —
m Focus:

Convex functions

_— —
Twice differentiable
"—?

m Qverview
1 Unconstrained "’\';\’1 F6 ()
Equality constraints Ax = b
General convex constraints [, (ﬂé o

" C—O"f)\ [U»o[a ‘(.(

@]

©2008 Carlos Guestrin 2




Solving unconstrained problems
* JE

= Unconstrained problem — ~ip £()

m Sequence of points: XOxPya £ =

m Exactly: Stop when qC(wJ :Px

= Approximately: Stop when £ (%) ~p"s¢
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Descent methods
" L o s

m X)) = () + 100 Ax) e— Ased  Avaccho—
Want:  £(x0) < [ (x®) nless £(®) = PF

m From convexity: . " X
fie) 7 ) A ORI ()

m Thus vi®)'(y-aM)z0 = f( 7 £ Y

m Therefore, pick Ax such that: X of &)

- € '
Ad=Yy-X \740{“’)1/39(<O :




AT RS V<)

Generic descent algorithm
"= JE

m Start from some x in dom f o

m Repeat X N p

Determine descent direction Ax 4

Line search to choose step size t -
Update: x € x +t Ax

m Until stopping criterion

;f‘a "c‘-’ n——
m Good stopping criterion: Jlb@(x\[llé'z N/S\ lly reslly i~

Jy  Fl) 7 £ 4 TR (9-X)
= In gradient descent, Ax = < G {(y)
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Exact line search

"
m Find best step size t: o+ %, pick  ivachin AX

/c = ﬂrb?:n F(X‘\' s AX) M

X ._.¢
SADx

m Problemis
3(3) = F(X+s Ax) [S Conwt l
(&)
Sometimes easy to solve in closed form

Other times can take a long time...
—————
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*u 'S L 4o —c

Backtracking: search — =

“ JEE =

‘H”P 'b(‘}‘uu’é-é, 24:
m From convexity, Fre)

lower bound on f(x+Ax): oy

£ et ax) 2 £(2) ¢ £ PRATAX fooand
Can’t really hope to achieve r-'r-:- iy

ideal decrease of Y ST i g g
Frdd ) guck phat LMD < L0 v o £ P 60T OY
m Instead pick some ae(o,05)

And achieve: I4e Mt € Lo, 4o £lxetax)g F()”‘("’(‘(‘v-;(é()r/_&
—_

m Choosingt: St with =1 PE v ane Tucky,

+ ' wie a gl
o,lfL\Ll/' w({é( 't = /% , G.(A_i-r"-n-”tL ,7"074‘(1( o% ak+
£eo[) leest B otks 0 Ax
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Backtracking line search alg.
" S

m Given
Point x
Descent direction Ax ) i =i
ae(0,0:5) |
B (o)
m t=1 Flz) | 9 ()T A Flat =t e A
m While f(x#Ax)> £G) + LL DFT B4 ’

E~C N,
\_) ?l

m Boyd & Vandenberghe: pick
ain [0.01,0.3]
Bin[0.1,0.8]
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Analysis of gradient descent
“ JE

n dgtawo_k, L) o Therhiony {—@%’ -
m Linear convergence rate:

f(x®) — p" = ¢ (f(x) — )

_— N

L\d"' 6\7 6 "".‘h.“ {

= Inlog plot, error decreases below a line...

m Rate c related to “condition number” of Hessian /lm’_n

¢ = 1 — 1/"condition number” X

—_—
P

m For quadratic problem: J,Z S Px + ZTXW

Condition number is A__ /A

'max’ " "min
=
=

m  Gradient descent bad when condition number is large
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< F) F
, e )-r .
Geometric};llydecreasing (l""“r Cm\,,,..r> %J‘X;"
= c<1

Observations about descent

. algorithms

m Observe linear | R2

convergence.in practice ." | \
= Boyd & Vandenberghe: " N e _ X

Jr -0 |

difference often not

significant in large s ow now om0 e F o

dimensional problems
May not be worth L

implementing exact LS when
complex

Mv(‘f“_.]]('coq_(,

m Condition number can
greatly affect convergence
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Solving quadratic problems is easy

" J
= Quadratic problem:* = ** P £ 4% xr /

m Solving equivalent to solving linear system:
Uf=0 Uz PX +4 -o = Px =-f

ey § o ludions
If system has at least one solution: done!

- ——

If system has no solutions: protlwmmunded%
?X3’é havinag 1o $o lurons u’/”

m Usually don’t have simple quadratic problems, but...
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Newton’s method %

m Second order Taylor expansion:

Plrasx) x £ (+45) = mnvca\fxsx%wvzféom q 7
- 36 ) {x. flz)]
9260 = r%cJ ST

" Descent direction, solution to linear system
Of (Kt <s D OHFK) AX = _gfE)
Solve For AX g

= Nice property: P “
We wanted: OF() Ax <O K\P\g
~ u
We get: S Uppow OY’F ()Z) fnuar'kly[(_ =) Axr\é___ /V%C(() U’ﬁ
° ., Of ()" vlﬁCx)'1 UFK) €0 beom JH () 729

o) Sucomit Conurg
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Newton’s method — alg.
= J
m Start from some x in dom f

m Repeat

Determine descent direction Ax,

= Sole  Systen VL—FCEAX = - ?71’-\6!)
Line search to choose step size t
Update: x € x +tAx,,

m Until stopping criterion

m Good stopping criterion:

SV () V() Vi) <

—~

Freax) 70 £ + OF) X by Conntiby
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Convergence analysis for Newton'’s

" A
m (Really see book for details.) 1¢ﬁM—W

e e IVF801. 2

Gradient is large /
. Damged Newton Phase

Step size ti1_
= Linear convergence

Gradient is small ”Vﬂﬂnl < q,
. lea=Neéwt&n-Rhase

Step size t=1

= Quadratic convergence
ch(2)
=<’

= Only lasts 6 steps
————
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Summary on Newton’s
“ JEE

. . . . . [T
m  Converges in very few iterations, especially in

quadratic phase ———— g6) = {(Axﬂ,) \

m Invariant to choice of coordinates or affine scaling = .|

Very useful property!
m  Performs well with problem size, not very sensitive to
parameter choices 8~
m  Can prove even cooler things when function is 5
il LLLS L
smooth
E.g., “self-concordance,” see book

m Many implementation tricks (see book) 5
— » )
= But...

Forming and storing Hessian is quadratic

= Can be prohibitive - O’l ‘F C J) AX =~ )U‘l[ é()

Solving linear system can be really expensive
Use quasi-Newton methods

i
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Solving problems with equality

_ constraints
=
m Equality constraints: i Fo)
Jality constraints
_ S.4. mAx =6

m N

m Seems very hard
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Null space
" JEE
m Equality constraints:

m Given one solution:

m Find other solutions:

m Since Null Space is a linear subspace:
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Eliminating linear equalities
"

m Equivalent optimization problems:

m Find basis for null space of A (linear algebra)
Solve unconstrained problem

m A concern...
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Solving quadratic problems with

_ eﬂualitz constraints

m Quadratic problem with equality constraints:
m KKT condition x* solution iff

m Rewriting:

m Solve linear system:
Any solution is OPT
If no solution, unbounded
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Newton’s method with equality
constraints
SR

m  Quadratic approximation:

m Start feasible, stay feasible:

m KKT:

m Solve linear system:

m  Move accordingly:
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General convex problem
“ JEE
m General (differentiable) convex problem:

m Equivalent problem with only equality
constraints:
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Approximating the indicator
" S
m Approximate indicator:

Correct as t
Differentiable

m Approximate optimization problem:

m Convey, if f, are convex, because




Log-barrier function
S

m Solve log-barrier problem with parameter t:

m Nice property:
Gradient:

Hessian:
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Force field interpretation
S

Log-barrier function:

Descending gradient of log barrier

Each term:
Want f,(x)<0
As we approach 0_:
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Central path
“ JEE

m For each t, solve:

m As t goes to infinity, approach solution of original
problem

m Problem becomes badly conditioned for very large t, so
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Barrier method
" A
m Given:
Feasible x
Initial t>0
p>1
m Repeat

Centering:
m Starting from x, compute:

Update: x:=
Stopping criterion: When t is “large enough”
Increase barrier param: t:=
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When is t large enough???
“ JEE
m Solve centering step:

m There exists values for dual vars (See book),
such that duality gap < k/t

m Thus:

m Stopping criterion k/t < €
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Centering step not (necessarily) exact
" JE
m Finding exact point on central path can take a while...

m Usually:

Run a few steps of Newton to recenter
Then increase t
(problem: duality gap result no longer holds!!)

m Most often use primal-dual method
Equivalent to Newton’s method on Lagrangian

= See book for details
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What about feasible starting point???
" S

m Phase |: Solve feasibility problem, e.g.,

Starting from feasible point:

(don’t solve to optimality!!! Stop when s<0)
When feasible region “not too small”, find point very quickly

m Phase ll: use feasible point from Phase | as starting point for
Newton’s or other method

m Also possible:
Change Phase | to guarantee starting point (near) central path
Combine Phase | and Phase I
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