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Solving
Convex Problems
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Today…

Thus far, focused on formulating convex problems
Today: How do we solve them!
Plan: 200 pages of book (Part III) in one lecture

Focus:
Convex functions
Twice differentiable

Overview
Unconstrained
Equality constraints
General convex constraints

2©2008 Carlos Guestrin



Solving unconstrained problems

Unconstrained problem
Sequence of points: 

Exactly: Stop when

Approximately: Stop when 
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Descent methods

x(k+1) = x(k) + t(k) ∆x(k)

Want: 

From convexity: 

Thus

Therefore, pick ∆x such that: 
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Generic descent algorithm

Start from some x in dom f
Repeat

Determine descent direction ∆x
Line search to choose step size t
Update: x x + t ∆x

Until stopping criterion

Good stopping criterion:

In gradient descent, ∆x = 
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Exact line search

Find best step size t:

Problem is

Sometimes easy to solve in closed form
Other times can take a long time…
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Backtracking line search

From convexity, 
lower bound on f(x+∆x):

Can’t really hope to achieve 
ideal decrease of 

Instead pick some α
And achieve: 

Choosing t:
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Backtracking line search alg.
Given

Point x
Descent direction ∆x
α
β

t=1
While f(x+∆x)>

t := βt

Boyd & Vandenberghe: pick 
α in [0.01,0.3]
β in [0.1,0.8] 
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Analysis of gradient descent
(details in book…)
Linear convergence rate:

f(x(k)) – p* ≤ ck (f(x(0)) – p*)

Geometrically decreasing
c<1
In log plot, error decreases below a line…

Rate c related to “condition number” of Hessian
c ≅ 1 – 1/”condition number”

For quadratic problem:
Condition number is λmax/λmin

Gradient descent bad when condition number is large
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Observations about descent 
algorithms

Observe linear 
convergence in practice
Boyd & Vandenberghe: 
difference often not 
significant in large 
dimensional problems

May not be worth 
implementing exact LS when 
complex

Condition number can 
greatly affect convergence
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Solving quadratic problems is easy

Quadratic problem:

Solving equivalent to solving linear system:

If system has at least one solution: done!

If system has no solutions: problem is unbounded

Usually don’t have simple quadratic problems, but…
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Newton’s method

Second order Taylor expansion:

Descent direction, solution to linear system

Nice property:
We wanted:

We get: 
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Newton’s method – alg.
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Start from some x in dom f
Repeat

Determine descent direction ∆xnt

Line search to choose step size t
Update: x x + t ∆xnt

Until stopping criterion

Good stopping criterion:

Convergence analysis for Newton’s

(Really see book for details.)

Two phases:
Gradient is large

Damped Newton Phase
Step size t<1

Linear convergence

Gradient is small
Pure Newton Phase

Step size t=1
Quadratic convergence

c^(2k)
Only lasts 6 steps
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Summary on Newton’s
Converges in very few iterations, especially in 
quadratic phase
Invariant to choice of coordinates or affine scaling 

Very useful property!
Performs well with problem size, not very sensitive to 
parameter choices
Can prove even cooler things when function is 
smooth

E.g., “self-concordance,” see book

Many implementation tricks (see book)

But…
Forming and storing Hessian is quadratic

Can be prohibitive

Solving linear system can be really expensive
Use quasi-Newton methods
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Solving problems with equality 
constraints

Equality constraints:

Seems very hard
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Null space

Equality constraints:

Given one solution:

Find other solutions:

Since Null Space is a linear subspace:
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Eliminating linear equalities

Equivalent optimization problems:

Find basis for null space of A (linear algebra)
Solve unconstrained problem

A concern…
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Solving quadratic problems with 
equality constraints
Quadratic problem with equality constraints:

KKT condition x* solution iff

Rewriting:

Solve linear system:
Any solution is OPT
If no solution, unbounded
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Newton’s method with equality 
constraints

Quadratic approximation:

Start feasible, stay feasible:

KKT:

Solve linear system:

Move accordingly: 
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General convex problem

General (differentiable) convex problem:

Equivalent problem with only equality 
constraints:
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Approximating the indicator

Approximate indicator:

Correct as t
Differentiable

Approximate optimization problem:

Convex, if fi are convex, because
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Log-barrier function

Solve log-barrier problem with parameter t:

Nice property:
Gradient:

Hessian: 
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Force field interpretation

Log-barrier function:

Descending gradient of log barrier

Each term:
Want fi(x)≤0
As we approach 0- : 
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Central path

For each t, solve:

As t goes to infinity, approach solution of original 
problem

Problem becomes badly conditioned for very large t, so 
want to stay close to path and make small steps on t 25©2008 Carlos Guestrin

Barrier method

Given:
Feasible x
Initial t>0
µ>1

Repeat
Centering:

Starting from x, compute:

Update:  x:=
Stopping criterion: When t is “large enough”
Increase barrier param:  t:=
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When is t large enough???

Solve centering step:

There exists values for dual vars (See book), 
such that duality gap ≤ k/t

Thus: 

Stopping criterion k/t ≤ ε
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Centering step not (necessarily) exact

Finding exact point on central path can take a while…

Usually:
Run a few steps of Newton to recenter
Then increase t
(problem: duality gap result no longer holds!!)

Most often use primal-dual method
Equivalent to Newton’s method on Lagrangian

See book for details
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What about feasible starting point???

Phase I: Solve feasibility problem, e.g.,

Starting from feasible point:

(don’t solve to optimality!!! Stop when s<0)
When feasible region “not too small”, find point very quickly

Phase II: use feasible point from Phase I as starting point for 
Newton’s or other method

Also possible:
Change Phase I to guarantee starting point (near) central path 
Combine Phase I and Phase II
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