



Consider a special case...

- Suppose each element in at most k sets
- From inequality constraint:
- Rounding strategy:
- Feasibility:
- Cost of rounded solution:

©2008 Carlos Guestrir

3

Very simple example of randomized rounding

- Solve set cover relaxation:
- Randomly pick a collection of subsets G
 For each S, add it to G with (independent) probability x_s
- What's the expected cost of G?
 - \square I_s indicator of whether set S is in G

©2008 Carlos Guestrin

.

How many elements do we cover?

- Expected cost of G can be lower than OPT_{IP}
 - □ Must cover fewer elements
- I_v is indicator of whether element v covered by G
- Expected number of elements covered:

©2008 Carlos Guestrir

5

How big can cost get?

- Expected cost is lower than OPT_{IP}
 - □ But how big can actual cost get?
 - □ (a simple bound here, more interesting bounds using more elaborate techniques)
- Markov Inequality: Let Y be a non-negative random variable
 - □ Then
- In our example:

©2008 Carlos Guestria

Randomization & Derandomization

- MAX-3SAT:
 - □ 3SAT formula:
 - Binary variables X₁,...,X_n
 - Conjunction of clauses C₁,...,C_M
 - Each clause is a disjunction of three literals on three different variables
 - □ Want assignment that maximizes number of satisfied formulas

©2008 Carlos Guestrin

7

Randomized algorithm for MAX-3SAT

- Pick assignment for each X_i independently, at random with prob. 0.5
- Expected number of satisfied clauses:

©2008 Carlos Guestrin

Aside: Probabilistic Method

- Expected number of satisfied clauses:
- Probabilistic method: for any random var. Y, there exists assignment y such that P(y)>0, y≥E[Y]
 - □ Almost obvious fact
 - □ Amazing consequences
- For example, in the context of MAX-3SAT:

©2008 Carlos Guestrir

9

Derandomization

- There exists assignment X that achieves
- In expectation, we get 7/8.M, but can we get it with prob. 1? Without randomization?
- Derandomization: From a randomized algorithm, obtain a deterministic algorithm with same guarantees
 - ☐ Today: method of conditional expectations

©2008 Carlos Guestri

Method of conditional expectations

- Conditional expectation:
- Expectation of the conditional expectation:

- Consider MAX-3SAT:
 - Expectation:
 - □ Expectation of conditional expectation:

©2008 Carlos Guestrin

11

Computing conditional expectation

- Conditioning on X₁=1:
- General case: X₁=v₁,..., X_i=v_i
 - □ Sum over clauses, I_i is indicator clause j is satisfied

©2008 Carlos Guestrin

Derandomized algorithm for MAX-3SAT

- For i=1,...,n
 - □ Try X_i=1
 - Compute
 - □ Try X_i=0
 - Compute
 - ☐ Set v_i to best assignment to X_i
- Deterministic algorithm guaranteed to achieve at least 7/8.M

©2008 Carlos Guestrin

13

Most probable explanation (MPE) in a Markov network

Markov net:

- Most probable explanation:
- In general, NP-complete problem, and hard to approximate

©2008 Carlos Guestrin

MPE for attractive MNs – 2 classes

- - Attractive MN:
 - □ E.g., image classification
 - Finding most probable explanation

Can be solved by

©2008 Carlos Guestrin

15

MPE, Attractive MNs, k classes

- MPE for k classes:
- Multiway cut:
 - □ Graph G, edge weights w_{ii}
 - $\ \square$ Finding minimum cut, separate $s_1,...,s_k$

Multiway cut problem is

©2008 Carlos Guestri

Multiway cut - combinatorial algorithm

- Very simple alg:
 - ☐ For each i=1...k
 - Find cut C_i that separates s_i from rest
 - □ Discard argmax_i w(C_i), return union of rest
- Algorithm achieves 2-2/k approximation
 - OPT cut A* separates graph into k components
 No advantage in more than k
 - $\hfill \Box$ From A* form A* $_1,\dots$, A* $_k$, where A* $_i$ separates s_i from rest
 - $\hfill \square$ Each edge in A* appears in
 - Thus

©2008 Carlos Guestrin

17

Multiway cut proof

- Thus, for OPT cut A* we have that:
- Each A*; separates s; from rest, thus
- But, can do better, because

©2008 Carlos Guestrin