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I
Relaxations and rounding
"

m What do we do if we don’t get integral solutions?
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Find cheapest collection of subsets that covers all elements

m Integer program and relaxation:
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Consider a special case...
*

m  Suppose each element in at most k sets

m From inequality constraint:

Rounding strategy:

Feasibility:

Cost of rounded solution:
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Very simple example of

- Aaagdaquzed rounding

m Solve set cover relaxation:

m Randomly pick a collection of subsets G
For each S, add it to G with (independent) probability x,

m What's the expected cost of G?
|, indicator of whether set S is in G
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How many elements do we cover?
* JE——

m Expected cost of G can be lower than OPT
Must cover fewer elements

m |, is indicator of whether element v covered by G
m Expected number of elements covered:
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How big can cost get?
"

m Expected cost is lower than OPTp

But how big can actual cost get?
(a simple bound here, more interesting bounds using more elaborate techniques)

m  Markov Inequality: Let Y be a non-negative random variable
Then

m In our example:
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Randomization & Derandomization
" BN
m MAX-3SAT:

3SAT formula:
= Binary variables X;,...,X,
= Conjunction of clauses C;,...,Cy
= Each clause is a disjunction of three literals on three different variables

Want assignment that maximizes number of satisfied formulas
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Randomized algorithm for

- Madaisal

m Pick assignment for each X; independently, at random
with prob. 0.5

m Expected number of satisfied clauses:
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Aside: Probabilistic Method
SN

m Expected number of satisfied clauses:

m Probabilistic method: for any random var. Y, there exists
assignment y such that P(y)>0, y=E[Y]
Almost obvious fact
Amazing consequences

m For example, in the context of MAX-3SAT:
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Derandomization
* JEE
m There exists assignment X that achieves

m |n expectation, we get 7/8.M, but can we get it
with prob. 1? Without randomization?

m Derandomization: From a randomized algorithm,
obtain a deterministic algorithm with same
guarantees

Today: method of conditional expectations
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Method of conditional expectations
* JE

m Conditional expectation:
m Expectation of the conditional expectation:

m Consider MAX-3SAT:
Expectation:

Expectation of conditional expectation:
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Computing conditional expectation
" S
m Conditioning on X,=1:

m General case: X;=v,,..., X{=V;
Sum over clauses, |; is indicator clause j is satisfied
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Derandomized algorithm for

- MAKSSAT
m Fori=1,...,n

Try Xi=1
= Compute

Try X;=0
= Compute

Set v, to best assignment to X

m Deterministic algorithm guaranteed to achieve at least 7/8.M

©2008 Carlos Guestrin

Most probable explanation

. RE)in.a Markov network

m Markov net:

m Most probable explanation:

m |n general, NP-complete problem, and hard to
approximate
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MPE for attractive MNs — 2 classes

* JE
m Attractive MN:
E.g., image classification

m Finding most probable explanation

m Can be solved by
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MPE, Attractive MNs, k classes

m MPE for k classes:

= Multiway cut:
Graph G, edge weights w;
Finding minimum cut, separate s;,...,s,

m Multiway cut problem is
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Multiway cut — combinatorial algorithm
" N

m  Very simple alg:
For eachi=1...k

= Find cut C, that separates s; from rest
Discard argmax; w(C;), return union of rest

m Algorithm achieves 2-2/k approximation

OPT cut A* separates graph into k components
= No advantage in more than k

From A* form A*,,...,A%,, where A% separates s; from rest

Each edge in A* appears in
= Thus
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Multiway cut proof
" JE
m Thus, for OPT cut A* we have that:

m Each A* separates s; from rest, thus

m But, can do better, because
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