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Relaxations and rounding

" J
m What do we do if we don't getintegral solutions?
g“cﬂl\s( PaNvP (Pré._l,by fro

m E.g., set cover problem \/

Ground elements % =
Setof Sets  § é S&
Cost for sets C Cs

Find cheapest collectlon of subsets that covers all elements

m Integer program and relaxation:
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= How can we obtain a good integer (rounded) solution? 1.4, O(h\
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Consider a special case...| —
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m Suppose each element in at most k sets

m From inequality constraint:
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= Rounding strategy: pick adl 5§ suck FAt Xs >/,)k—
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a Feasibility: with vopect b P
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m Cost of rounded solution: ’ichs 7, OPTyp
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Very simple example of <o -

_ _ Cla) tCtBd
- Zgpdomized rounding

m Solve set cover relaxation:
rMin id: Cs ¥
* M T W21

3 et co, [1 N
m Randomly pick a coll,(\ection of subsets G

For each S, add it to G with (independent) probability x;

= What's the expected cost of G? El<(c H
| indicator of whether set S is in G

N rr— o ST —
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m Expected cost of G can be lower than OPT
Must cover fewer elements

m |, is indicator of whether element v covered by G

I (-1 )%

k3|
How many elements do we cover?

] ?xpected number of elements covered:
)= ECET) = FEOS
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How big can cost get?

FL_C_ X l_]
v
m Expected cost is lower than OPT,

Postw s4sSin The,
But how big can actual cost get?

(a simple bound here, more interesting bounds using more elaborate techniques)

= Markov Inequality: Let Y be a non-negative random variable

Then By » ¢ £0Y3) < L
= Inour example: \/-C (@3 7,6

e v20m) < P(CG) % 2 oft) <L
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Randomization & Derandomization
"
m MAX-3SAT:

3SAT formula:

= Binary variables X,,...,X
= Conjunction of clauses C,,...,Cy,

= Each clause is a disjunction of three literals on three different variables
Want assignment that maximizes number of satisfied formulas

SATIX) = # of SAtid  fungs D9 "SSigrment
may. SAT(x)
i g,mj,,\t safss Rebk X SATY) = M
T Gone el X SAT(X) S 1
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Randomized algorithm for MAX-

m Pick assignment for each X; independently, at random
with prob. 0.5

_L) & ‘«fl\ﬂ-“vw
L] Expected number of satisfied clauses: Claasc jis S

T =< a[%iﬁ - ?ﬂi
?‘/”\ mediowd
¥ Considr (X, V1)
only Y120, X2z, (=0
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Aside: Probabilistic Method
"

m Expected number of satisfied clauses:

ELSaTO) 2 %? M

m Probabilistic method: for any random var. Y, there exists
assignment y such that P(y)>0, y=E[Y]

Almost obvious fact
Amazing consequences
=

m For example, in the context of MAX-3SAT:
Evmv\j AT formande has  an  asSignment
Lhat  sahshis af kst 7“/5, OF Hhn  dnasis
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Derandomization
" S
m There exists assignment X that achieves ?/d;/‘ﬂ

m |n expectation, we get 7/8.M, but can we get it

with prob. 1? Without randomization?
_\

m Derandomization: From a randomized algorithm,
obtain a deterministic algorithm with same
guarantees

Today: method of conditional expectations
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Method of conditional expectations

“ J
m Conditional expectation: ED“U} = ?X P@(Ib)

m Expectation of the conditional expectation:

EECVIN = eny o ym PIKLY) =P&)
L] Con’sider MAX-3SAT:
Expectation: ¢ SAT(X}} Ve ?/g M

Expectation of conditional expectation:

ECSAT) = £y Exemr L mrmlx‘l]

- el (TR X=1) + P(4=0) ECSATE [ =)
created X =1) 41 E{SATE) 1K 120) ;ém

Z
mm§ €(Sate0 (¥,=1) ECM(@M@\] 7,3}5“
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Computing conditional expectation

" JEE n
m Conditioning on X,=1: C;C TR [, =4 ;E,E\qj\[ﬁ:ﬁ

LoXn,
- c F Ais A i el ~
eCTs ¥, 31} - ?/g AT i e
1 Xy s f’\L[au)L:\I‘lnﬂ( X, =1 ”\-Llu.;CJ'.:i_
[-—/l:% T w e < co X021 Aaggnt emig
< <j=1
m General case: X;=v,,..., Xi=V; (X1 v o, U 5)

Sum over clauses, |; is indicator clause j is satisfied

C Ve 2V e ey (e

GLI\) ‘ )(‘T.\/L’_,, \(;:V;_S - l

\— \ of 7(‘:\/”-—%":'/" ’(‘OLS n't meke_ C)-Lu,

1" unh  bhot are K W\‘\SSijq
Varishleg [ ¢




Derandomized algorithm for

- MagSISAT

m Fori=1,....n

Try X=1
= Compute £ [ SATH) | Xi=v,,-liei = Uiny,

Try Xi=0 -
= Compute [ $4T () (X =V, e X =00 /;(._o}

Set v, to best assignment to X; et

_

m Deterministic algorithm guaranteed to achieve at least 7/8.M
\

T ——
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Most probable explanation

. Warkov network

m Markov net:

m Most probable explanation:

m |n general, NP-complete problem, and hard to
approximate
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MPE for attractive MNs — 2 classes

“ JE
m Attractive MN:
E.g., image classification

m Finding most probable explanation

m Can be solved by
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MPE, Attractive MNSs, k classes
= JEE

m MPE for k classes:

= Multiway cut:
Graph G, edge weights w;
Finding minimum cut, separate s,,..., Sy

m Multiway cut problem is
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Multiway cut — combinatorial algorithm
" S

m Very simple alg:
For each i=1...k

= Find cut C, that separates s; from rest
Discard argmax; w(C;), return union of rest

m Algorithm achieves 2-2/k approximation

OPT cut A* separates graph into k components
= No advantage in more than k

From A* form A*,,...,A%,, where A* separates s, from rest

Each edge in A* appears in
= Thus
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Multiway cut proof
" JEE
m Thus, for OPT cut A* we have that:

m Each A* separates s, from rest, thus

m But, can do better, because
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