

Very simple example of randomized rounding

E[A] + EEB]

Solve set cover relaxation:

- Randomly pick a collection of subsets G
 - \Box For each S, add it to $\overset{\leftarrow}{G}$ with (independent) probability x_s
- What's the expected cost of G?
 - I_s indicator of whether set S is in G

E[c(G)] = E[\(\sum_s\) Is (s] = \(\sum_s\) c_s E[Is] = \(\sum_s\) (s\(\xi\)s = OPI_{\(\phi\)} (costs less than OPTIP, because closs not cover all elements, i.e., (is infecsible wit IP

How big can cost get? | Expected cost is lower than OPT | Poster sussing them: 3-6pm Atrium WH | But how big can actual cost get? | (a simple bound here, more interesting bounds using more elaborate techniques) | Markov Inequality: Let Y be a non-negative random variable | Then | P(Y > + E[Y]) < | | | In our example: Y=C(G)>0 | P((G)>2 OPT | P) < P(C(G)>0 | OPT | P) OPT | P | Course OPT | P) OPT | P

Randomization & Derandomization

- □ 3SAT formula:
 - Binary variables X₁,...,X_n
 - Conjunction of clauses C₁,...,C_M
 - Each clause is a disjunction of three literals on three different variables
- □ Want assignment that maximizes number of satisfied formulas

Randomized algorithm for MAX-3SAT

- Pick assignment for each X_i independently, at random with prob. 0.5
- Expected number of satisfied clauses: Tj ← whother chase j is sat.

only X1=0, X2=1, X3=0

doesn't sakisfy,
only happens with

Aside: Probabilistic Method

Expected number of satisfied clauses:

ELSATIND 2 7 M

- Probabilistic method: for any random var. Y, there exists assignment y such that P(y)>0, y≥E[Y]
 - □ Almost obvious fact
 - □ Amazing consequences
- For example, in the context of MAX-3SAT:

©2008 Carlos Guestrir

Derandomization

■ There exists assignment X that achieves

- In expectation, we get 7/8.M, but can we get it with prob. 1? Without randomization?
- Derandomization: From a randomized algorithm, obtain a deterministic algorithm with same quarantees
 - Today: method of conditional expectations

©2008 Carlos Guestrin

Method of conditional expectations

- Conditional expectation: ECX 19] = ≥ × PX(19)
- Expectation of the conditional expectation

- Consider MAX-3SAT:
 - □ Expectation: E[SAT(X]] 7.7/8 M
 - □ Expectation of conditional expectation:

$$\begin{split} & \in \text{CSAT}(X) = \mathbb{E}_{X_{1}} \left[\mathbb{E}_{X_{2} \sim X_{1}} \left[\text{SAT}(X) | X_{1} \right] \right] \\ & = P(X_{1}=1) \quad \mathbb{E} \left[\text{SAT}(X) | X_{1}=1 \right] \quad + \quad P(X_{1}=0) \quad \mathbb{E} \left[\text{SAT}(X) | X_{1}=0 \right] \quad \neq \quad \frac{7}{8} \text{ M} \\ & = \frac{1}{2} \quad \mathbb{E} \left[\text{SAT}(X) | X_{1}=1 \right] \quad + \quad \frac{1}{2} \quad \mathbb{E} \left[\text{SAT}(X) | X_{1}=0 \right) \quad \neq \quad \frac{7}{8} \text{ M} \\ & = \frac{1}{2} \quad \text{max} \left\{ \mathbb{E} \left(\text{SAT}(X) | X_{1}=1 \right) \quad ; \quad \mathbb{E} \left[\text{SAT}(X) | X_{1}=0 \right) \right\} \quad 7, \quad 7_{8} \text{ M} \end{split}$$

Computing conditional expectation

• Conditioning on $X_1=1$: $\underset{X_{2-X_1}}{\text{ET}} \text{SATW} | \{x_1=1\} = \underset{j=1}{\overset{M}{\underset{j=1}{\sum}}} \text{ECT}_{j} | \{x_1=2\}$

$$\begin{aligned} & \mathcal{E}(\mathcal{I}_j|X_i=1) = \begin{cases} & \mathcal{I}_g & \text{if } X_i \text{ is not in clause } j \\ & 1 & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j \text{ is in clause } j, \text{ and } X_i=1 \text{ mass } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j \text{ is in clause } j \text{ is in clause } j \text{ is in clause } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j \text{ is in clause } j \text{ is in clause } j \text{ is in clause } j=1 \\ & |I-\frac{1}{4}=\frac{3}{4} & \text{if } X_i \text{ is in clause } j \text{ is in clause } j \text{ is in clause } j \text{$$

- □ Sum over clauses, I_i is indicator clause j is satisfied

Derandomized algorithm for MAX-3SAT

- For i=1,...,n
 - □ Try X_i=1
 - Compute $E \subseteq SAT(x) \mid X_1 = v_1, \dots, X_{i-1} = v_{i-1}, X_i = 1$
 - □ Try X_i=0
 - Compute $E(SAT(x) | X_1 = V_1, ..., X_{i-1} = V_{i-1}, X_i = 0)$
 - □ Set v_i to best assignment to X_i
- Deterministic algorithm guaranteed to achieve at least 7/8.M

Most probable explanation (MPE) in a Markov network

Markov net:

- Most probable explanation:
- In general, NP-complete problem, and hard to approximate

MPE for attractive MNs – 2 classes

- Attractive MN:
 - □ E.g., image classification
- Finding most probable explanation

Can be solved by

©2008 Carlos Guestrin

15

MPE, Attractive MNs, k classes

- MPE for k classes:
- Multiway cut:
 - $\hfill \square$ Graph G, edge weights w_{ij}
 - $\hfill \Box$ Finding minimum cut, separate s_1, \ldots, s_k

Multiway cut problem is

©2008 Carlos Guestrin

16

Multiway cut – combinatorial algorithm

- Very simple alg:
 - ☐ For each i=1...k
 - Find cut C_i that separates s_i from rest
 - \square Discard $argmax_i w(C_i)$, return union of rest
- Algorithm achieves 2-2/k approximation
 - □ OPT cut A* separates graph into k components
 - No advantage in more than k

 - □ Each edge in A* appears in
 - Thus

©2008 Carlos Guestrin

17

Multiway cut proof

- Thus, for OPT cut A* we have that:
- Each A*; separates s; from rest, thus
- But, can do better, because

©2008 Carlos Guestrin

10