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Today… 

  Want to solve integer program 
 E.g., vars in {0,1} 

  Solve convex relaxation 
 E.g., vars in [0,1] 

  If minimizing, relaxed objective lower: 

  Want integer solution:  
 Somehow round relaxed solution: 

  Can affect feasibility 
  Can affect costs 

  Today: some ideas & strategies for rounding 
 See optional books for many more options & details  
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Integral basic feasible solutions 

  LP: 

  If all optimal basic feasible solutions are integral, we are 
done! 
  LP relaxation is optimal!!! 

  It is sufficient if all basic feasible solutions are integral 
 When does this happen? 
 A sufficient (but not necessary) condition: 
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Integral matrix Integral inverse? 
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One sufficient (but not necessary) 
condition: Totally Unimodular matrix 
  Structure of inverse of matrix: 

  Inverse integral if 
 Determinant:  
 Cofactors:  
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Relaxations with Totally 
Unimodular Matrices 

  Defn: Matrix A is totally unimodular if the 
determinant of any square submatrix is either -1, 
0, or 1 

  Thm: If an LP has a totally unimodular constraint 
matrix A, and the vector b is integral, then all 
basic feasible solutions are integral 
  Thus  
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How often do you see totally 
unimodularity? 

  Often 
 Bipartite matching 
 Cuts 
 Maximum margin Markov networks 

  Not often 
   

  One thing we can agree: it’s usually not easy to 
spot… 
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Sufficient conditions for total 
unimodularity 

  Matrix A is totally unimodular if 
  All entries are -1, 0, or 1 
  Each column contains at most two nonzero elements 
  Rows of A can be partitioned into two sets A1and A2 such that two nonzero 

entries in a column are  
  in the same set of rows if they have different signs  
  in different sets of rows if they have the same sign 

  Maximum bipartite matching: 
  Two sets of nodes 

  Edges from nodes i in A to j in B have weight wij 
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Relaxations and rounding 
  What do we do if we don’t get integral solutions? 

    
  E.g., set cover problem 

  Ground elements 
  Set of Sets 
  Cost for sets 
  Find cheapest collection of subsets that covers all elements 

  Integer program and relaxation: 

  How can we obtain a good integer (rounded) solution? 
  If we set all nonzero xS to one, then  
    
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Consider a special case… 
  Suppose each element in at most k sets 

  From inequality constraint: 

  Rounding strategy:  

  Feasibility: 

  Cost of rounded solution:  
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Very simple example of 
randomized rounding 

  Solve set cover relaxation: 

  Randomly pick a collection of subsets G 
  For each S, add it to G with (independent) probability xs 

  What’s the expected cost of G? 
  Is indicator of whether set S is in G 
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How many elements do we cover? 

  Expected cost of G can be lower than OPTIP 
 Must cover fewer elements 

  Iv is indicator of whether element v covered by G 
  Expected number of elements covered: 
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How big can cost get? 
  Expected cost is lower than OPTIP 

  But how big can actual cost get? 
  (a simple bound here, more interesting bounds using more elaborate techniques) 

  Markov Inequality: Let Y be a non-negative random variable 
  Then  

  In our example: 
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Randomization & Derandomization 

  MAX-3SAT: 
  3SAT formula: 

  Binary variables X1,…,Xn 
  Conjunction of clauses C1,…,CM 
  Each clause is a disjunction of three literals on three different variables 

 Want assignment that maximizes number of satisfied formulas 
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Randomized algorithm for 
MAX-3SAT 

  Pick assignment for each Xi independently, at random 
with prob. 0.5 

  Expected number of satisfied clauses: 
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Aside: Probabilistic Method 

  Expected number of satisfied clauses: 

  Probabilistic method: for any random var. Y, there exists 
assignment y such that P(y)>0, y≥E[Y] 
 Almost obvious fact 
 Amazing consequences 

  For example, in the context of MAX-3SAT: 
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Derandomization 

  There exists assignment X that achieves 

  In expectation, we get 7/8.M, but can we get it 
with prob. 1? Without randomization? 

  Derandomization: From a randomized algorithm, 
obtain a deterministic algorithm with same 
guarantees 
 Today: method of conditional expectations 
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Method of conditional expectations 
  Conditional expectation: 
  Expectation of the conditional expectation: 

    

  Consider MAX-3SAT: 
  Expectation: 

  Expectation of conditional expectation: 
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Computing conditional expectation 

  Conditioning on X1=1: 

  General case: X1=v1,…, Xi=vi 
 Sum over clauses, Ij is indicator clause j is satisfied  
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Derandomized algorithm for 
MAX-3SAT 
  For i=1,…,n 

  Try Xi=1 
  Compute  

  Try Xi=0 
  Compute 

 Set vi to best assignment to Xi 

  Deterministic algorithm guaranteed to achieve at least 7/8.M  
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