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Today...
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m Want to solve integer program
E.g., varsin {0,1}

m Solve convex relaxation Mia Fo (0
E.g., vars in [0,1] ﬁ;&) <0
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m Want integer solution:
Somehow round relaxed solution:

= Can affect feasibility
S ——
= Can affect costs

m Today: some ideas & strategies for rounding
See optional books for many more options & details
—
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Integral basic feasible solutions
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m If all optimal basic feasible solutions are integral, we are
dane!
LP relaxation is optimal!!!
m |t is sufficient if all basic feasible solutions are integral
When does this happen?
A sufficient (but not necessary) cgndltlon hoivel t
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Integral matrlx =>»Integral inverse?
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condition: Totally Unimodular
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m Structure of inverse of matrix:
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m Inverse integral if
Determinant: [0\ < -1, 01§ it
G
Cofactors: - [, 0, dattrmiee oF $fmee D
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Relaxations with Totally

. W Matrices

m Defn: MatrixAiitotally unimodular if the
determinant of ary square submatrix is either -1,

O,orl
A - (EZ]

m Thm: If an LP has a totally unimodular constraint
matrix A, and the vector b is integral, then all
basic feasible solutions are integral

Thus LP v« lagedis, pee Ay Solehn
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How often do you see totally

- dupodularity??
m Often

Bipartite matching
Cuts

Maximum margin Markov networks
/\_——

m Not often
Hherist V=P

m One thing we can agree: it's usually not easy to
spot...
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Sufficient conditions for total

- dadulanty

= Matrix A is totally unimodular if

. o verm2l r$
All entries are -1, 0,. orl Q’/ In ot st P
Each column contains at most two nonzero elements ¢ onFhaink

Rows of A can be partitioned into two sets A!and A, such that two nonzero
entries in a column are
= in the same set of rows if they have different signs
= in different sets of rows if they have the same sign

Two sets of nodes . .
= Edges from nodesiin Atoj |n B have weight w; . é :Z 5
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Relaxations and rounding
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m What do we do if we don't get integral solutions?
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m E.g., set cover problem \/ [ /[ o >

Ground elements v & v M x
Set of Sets Sé5 S& I U
Costforsets (s

Find cheapest collection of subsets/thaMents
m Integer program and relaxation:
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m How can we obtain a goad integer (rounded) solution? bibeh 0(~)
If we set all nonzero xs to one, then v L7y Gad 1 N AN ians L
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