Quadratic programs

Problem statement

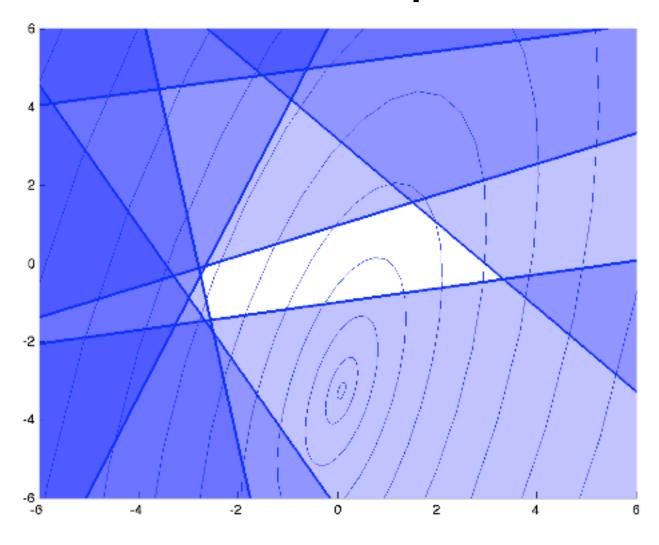
- Linear = ≥ ≤ constraints
- Quadratic objective
- minimize

$$Ax + b \ge 0$$

$$Ex + d = 0$$

subject to

For example



QCQP

- Quadratic constraints make problem harder -- no longer called a QP!
- Quadratically-constrained QP instead

minimize
$$a^2 + b^2$$
 subject to
 $a \ge x^2$, $b \ge y^2$
 $3x + y = 6$

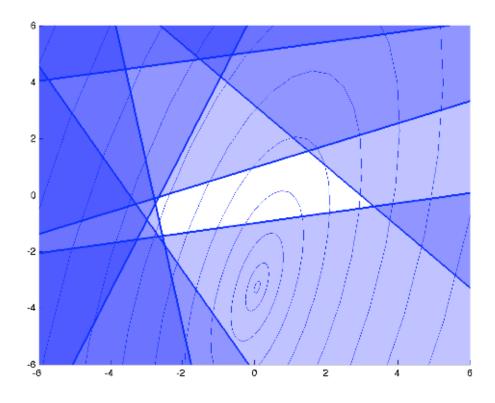
How hard are QPs?

Max cut problem (NP-complete)

Max cut QP

QP is NP-hard (in fact, NP-complete)

Convex QPs



- +ve semidefinite objective
 - minimize x'Hx/2 + c'x
- Or -ve semidefinite for maximization
- Convex QP is about as hard as LP (poly-time, but very flexible)

Sketching convex QPs

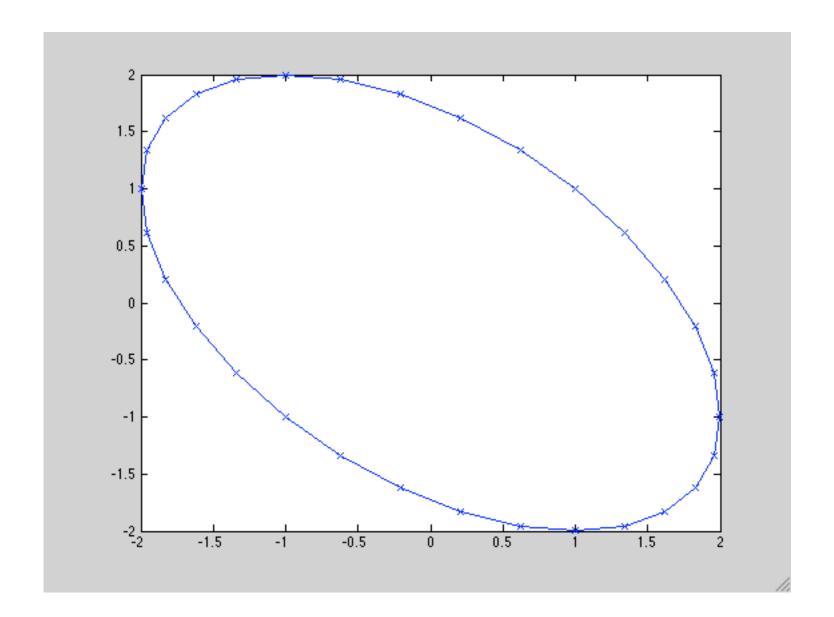
- min $(x-4)^2 + (y-2)^2$ s.t.
- $3x + 2y \le 6$
- $x \ge 0$, $y \ge 0$

Sketching ellipses

- min x'Hx/2 c'x s.t. ...
- If H = identity, circles centered @ c
- For positive-definite H = A'A:
- min x'A'Ax/2 c'x y = Ax
- In y-space, circles around A⁻¹c
- In x-space: images of circles under A

Sketching example

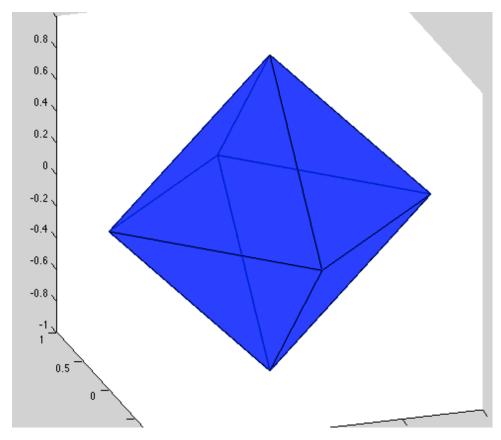
•
$$H = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix} = L L'$$
• $L = \begin{pmatrix} 2 & 2 \\ -1 & \sqrt{3} \end{pmatrix}$



Quadratic program examples

Euclidean projection

• Find point closest to (3, 3, 3) in octahedron



Robust (Huber) regression

- Given points (x_i, y_i)
- L₂ regression: $\min_{w} \Sigma_{i} (y_{i} - x_{i}'w)^{2}$
- Problem:
- Solution: Huber loss $\min_{w} \Sigma_{i} Hu(y_{i} x_{i}'w)$

$$Hu(z) =$$

Huber loss as QP

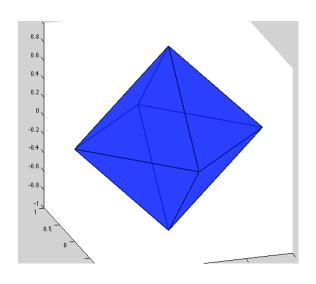
• Hu(z):

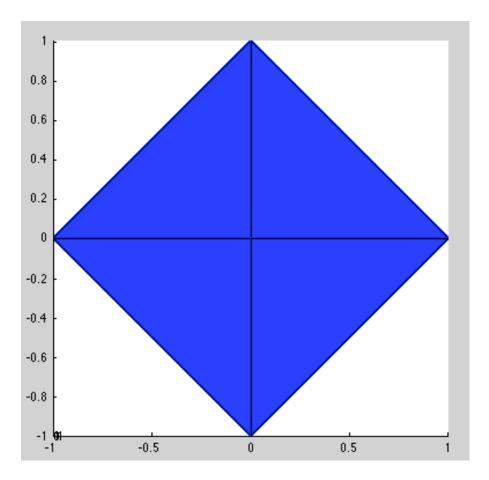
LASSO

- "Least Absolute Shrinkage & Selection Operator"
- Problem: regression with many more features than examples min_w Σ_i (y_i - x_i'w)²
- Problem:

Why would LASSO work?

- Imagine constraining ||w||₁
- Pretend quadratic is near-spherical





LASSO as QP

• Just like absolute value LP $\min_{w} \Sigma_{i} (y_{i} - x_{i}'w)^{2} + \Sigma_{j} s_{j}$ $s_{j} \ge w_{j}$ $s_{i} \ge -w_{i}$

Support vector machines

Maximizing margin

```
• margin = y_i (x_i \cdot \overline{w} - \overline{b})
```

• max s.t.

Administrative

- Submission directories should be present now. /afs/andrew/course/10/725/Submit/your-ID Check yours!
 - e.g., submit a small file "test.txt"
- We don't want to hear about problems late on night before due date...
- Audit deadline is tomorrow (1/29)
 - make sure we know about your preference
 - no need to tell us again if you signed up on Wed.
 - we are trying to accomodate as many as possible