

L₁ Regression

- Least-squares regression: $\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_j \left(t(\mathbf{x}_j) \sum_i w_i h_i(\mathbf{x}_j) \right)^2$
- L₁ regression:
- Absolute values, not linear... how can this be solved???

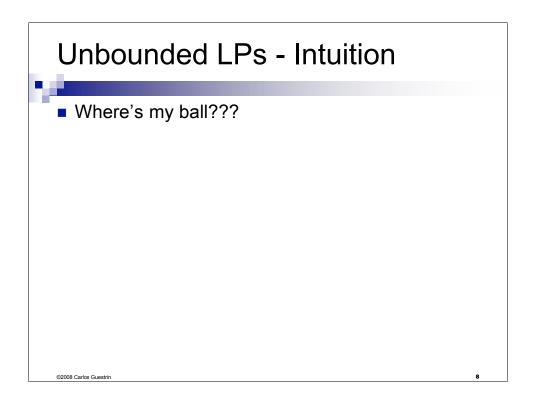
©2008 Carlos Guestri

LPs are cool

- Fourier talked about LPs
- Dantzig discovered the Simplex algorithm in 1947
 - Exponential time
 - □ Versions of simplex are still among fastest LP solvers
- Many thought LPs were NP-hard...
- First polytime algorithm:
 - □ Khachiyan1979, first practical Karmarkar 1984
- Considered "hardest" polytime problem
- Many, many, many, many important practical apps
- Can approximate convex problems
- Basis for many, many, many, many approximation algorithms
- All in all, LPs are the foundation of "everything optimization", if you understand LPs, you are set to understanding the rest

©2008 Carlos Guestrin

_


Graphical representation of LPs

- Constraints:
 - $x_1 + 2x_2 \le 3$
 - $2x_1+x_2 \le 3$
 - $x_1 \ge 0, x_2 \ge 0$
- Objective functions:

©2008 Carlos Guestria

Visualizing Solution - Intuition • Dropping a ball

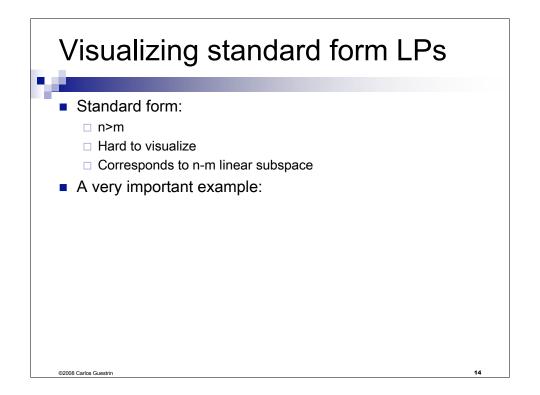
Infeasible LPs - Intuition No room for the ball...

General Form of Linear Program	
■ Variables:	
Objective:Constraints:	
 Linear combination of variables, constant coefficients 	
□ Less than:□ Greater than:	
□ Equality:■ Types of variables	
□ Positive□ Negative	
□ Free	
#2008 Carlos Quertria	10

Matrix Form What we have seen thus far:

Matrix form:

©2008 Carlos Guestrin


11

LPs in Standard Form

- Standard form:
 - □ Only equality and positivity constraints
 - □ Every LP can be written this way!
- Turning inequalities into equalities
- What about variables?
 - Negative variables:
 - □ Free variables:
- Side note, can also turn equality into inequalities, how?

©2008 Carlos Guestrin

Feasibility Problems

- "Find a (any) vector that satisfies the constraints, or say it's infeasible"
 i.e., no objective
- Much easier?
 - □ Not quite...
- Suppose you know optimal objective is v*
 - □ Solve feasibility problem
- Don't know v*?

©2008 Carlos Guestrin

15

Announcements

- Update about waiting list and auditors Next week
 - $\hfill\Box$ Priority for people taking the class for credit
- Linear algebra review
 - □ Today, special TIME & LOCATION: 6-7PM NSH 1305
- First recitation, linear programming
 - $\hfill\square$ Thursday, 5:00-6:20, Wean Hall 5409

©2008 Carlos Guestrin

Understanding the Geometry of LPs

- Rest of today and part of next lecture: Understanding geometry of LPs
- Focus on inequality constraints, but works with equalities too
 - ☐ A few hints along the way
- Provides the foundation for
 - □ LP formulations
 - Duality
 - □ Solution methods
 - □ Conquering the world

©2008 Carlos Guestrin

17

The Polyhedron*

- Definition:
 - □ Inequality constraints
 - ☐ (Can also contain equalities)
- Visualization

* Sometimes called polytope, noboby can agree on the definition

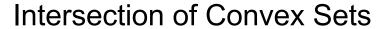
Another view of polyhedra: Intersection of Halfspaces & Hyperplanes

- Half space:
- Hyperplane:
- Intersection:

©2008 Carlos Guestrin

19

Infeasible LPs


LP is infeasible if and only if polyhedron defined by constraints is empty

□ Feasibility doesn't depend on the objective function

Another interesting case: Polyhedron is a point

©2008 Carlos Guestrin

Convex Sets Definition: "Every line segment between two points is in the set" Examples:

■ Fundamental Theorem:

Intersection of convex sets is convex

What can we say about polyhedra?

©2008 Carlos Guestrin

--

Interesting Case: Convex Hull

- A convex combination
- Convex hull
 - □ Set of all possible convex combinations
- Interesting fact: "Given set of points in a convex set, their convex hull is contained in the convex set"

©2008 Carlos Guestrin

23

Extreme Points of a Polyhedron

 Extreme points cannot be represented as a linear combination of two other points in polyhedron

Examples:

©2008 Carlos Guestrir

What you need to know

- Formulating an LP
 - □ E.g., L₁ Regression
- Visualization of LPs
 - □ Solution, unboundedness, feasibility, standard form
- General and Standard Forms of Linear Programs
 - □ And transformations
- Feasibility problems
- The Polyhedron
- Convex sets
- Convex Hull
- Extreme Points

©2008 Carlos Guestrin