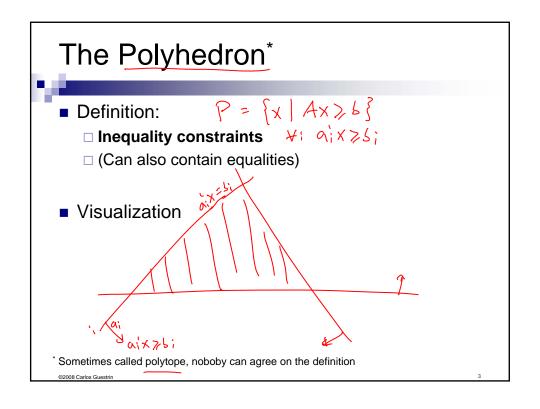
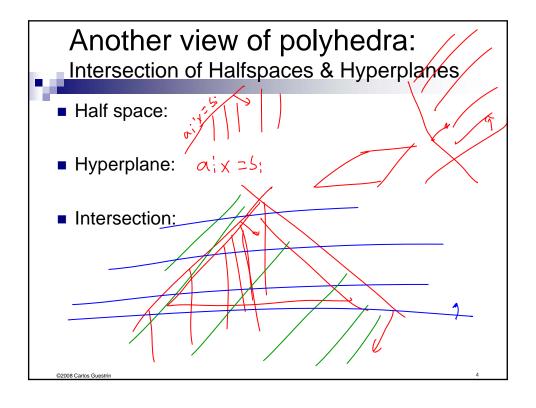
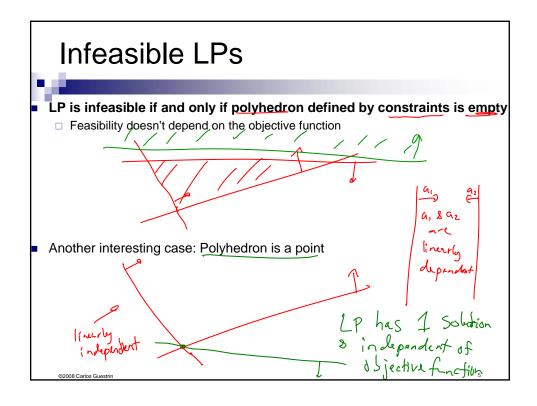
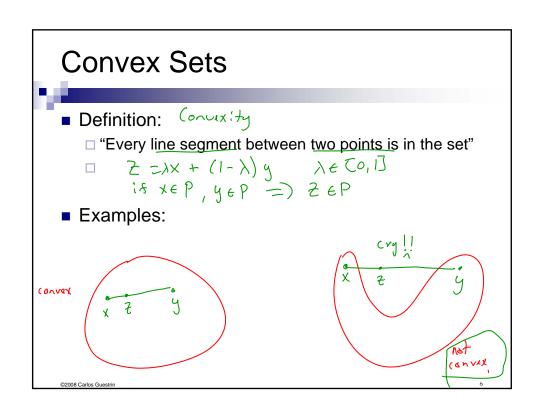


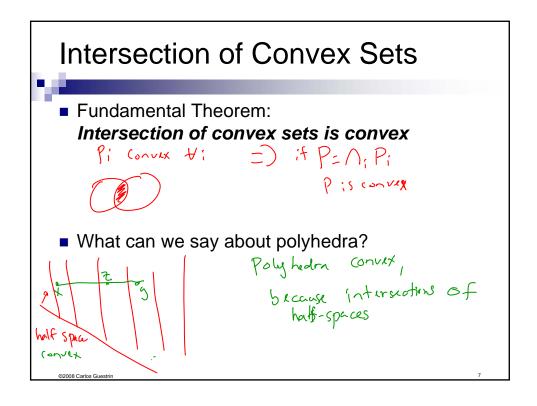
Understanding the Geometry of LPs Today's lecture: Understanding geometry of LPs Focus on inequality constraints, but works with equalities too A few hints along the way Provides the foundation for LP formulations Duality Solution methods Conquering the world

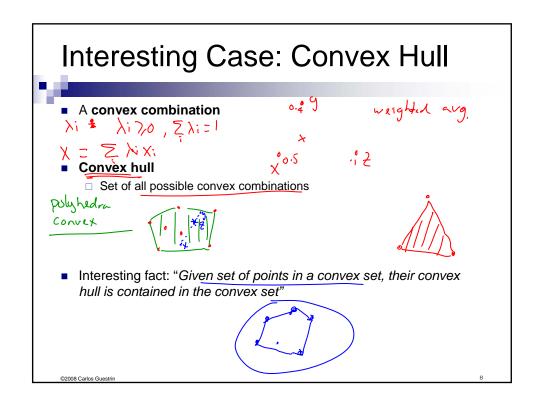


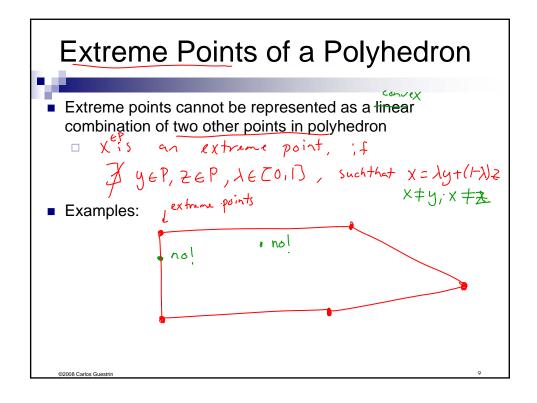


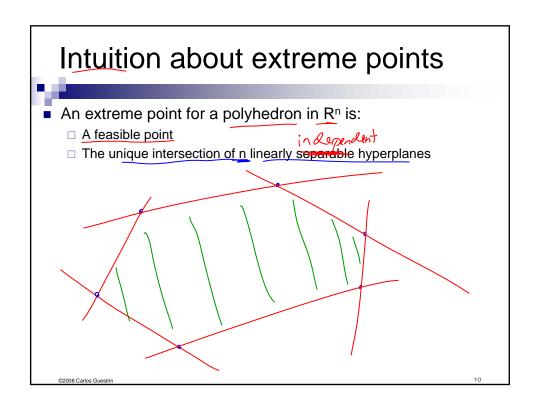




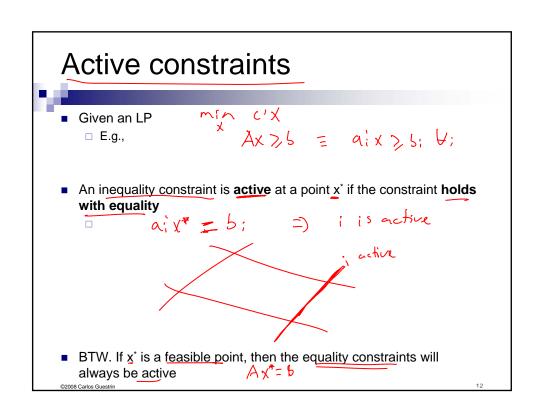


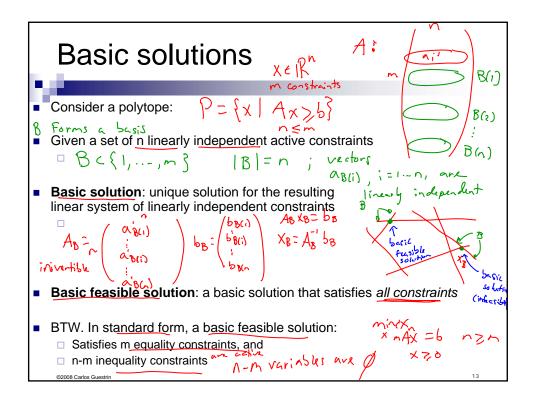


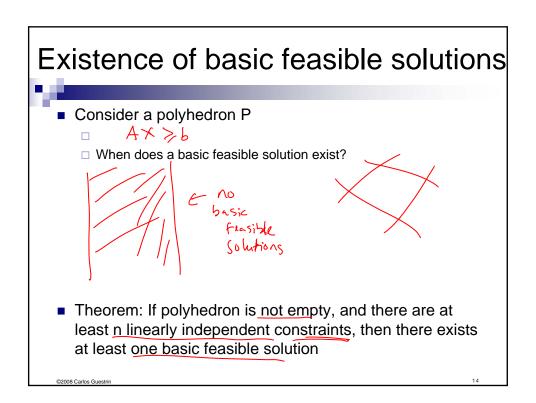




Linearly Independent







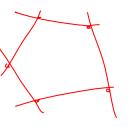
What can we do with basic (feasible) solutions? Suppose you know which constraints are active at the optimal point, then: finding optimal solution is just matrix inversion ** = A** b** Solve LP by searching over active constraints Basis of famous and effective (and worst case exponential) simplex algorithm How many basic (feasible) solutions? Every subset of n linearly independent constraints could be a basic solution Finite set!

Basic feasible solutions and Extreme points

- Basic feasible solution x*:
 - □ Feasible point

□ Worst case?

□ Unique solution to n linearly independent



- Extreme point x*:
 - □ Cannot be written as a linear combination of other points

- Definitions are quite different
- Theorem: x* is a basic fe<u>asible</u> solution if and only if x* is an extreme point

©2008 Carlos Guestrin

16

