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Maximum flow, directed graph
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L, Regression / R ;m
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m Least-squares regression: W° = arg mmz ( szh (XJ)>

_ Flicw
m L, regression: gt 72y ‘M‘r, lsae

< Vrar [y
wh = cvgmin [[6-Hull, = argrain ? | £6xy) ’Zt Lv.'A:(xJJ)‘?PMk

W
m Absolute values, not linear... how can this be solved??? o 53 .

min 2 £)
’W}£ d ’ (_Dv\.yhﬁ-)"][bv- b{be:) le
Vi
537/'6(3(&\* Z\\«/;k:(%g\ _vé >’4

& zfz\w;k‘:(xﬁ‘s ~ € &) laf?7 -3

©2008 Carlos Guestrin




LPs are cool
" J

m Fourier talked about LPs
m Dantzig discovered the Simplex algorithm in 1947

Exponential time

Versions of simplex are still among fastest LP solvers
m Many thought LPs were NP-hard...

m First polytime algorithm:
Khachiyan1979, first practical Karmarkar 1984

Considered “hardest” polytime problem

Many, many, many, many, many important practical apps
Can approximate convex problems

Basis for many, many, many, many approximation algorithms

All'in all, LPs are the foundation of “everything optimization”, if
you understand LPs, you are set to understanding the rest
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Graphical re

m Constraints:
X, +2X, < 3
2% +X, <3
X,20, X,=0

m Objective functions:
maxX Ky 4%y = (\l—LI_) 1)‘_
Xz, Koz \ ¢
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Visualizing Solution - Intuition
“ JEE
m Dropping a ball i
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Unbounded LPs - Intuition
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Infeasible LPs - Intuition
" JEE
m No room for the ball...
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General Form of Linear Program
" JEE
o et ophn

m Variables: X,, ... ,Xx min C'X
m Objective: ™' Z civ = <X x :
CJ TToeny v ardzdy el
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Linear combination of variables, constant 2

coefficients \ AaiXz 50 ¢ M,
Lessthan: cai'X < bt & Zasjxj <5 Yo el

Greater than: ovi X2 b;

Equality: A K= b,

m Types of variables Mfre Sew 3
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Negative “/13 £
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Matrix Form
= JEE

= What we have seen thus far:  » oot o
min C'X nSten
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LPs in Standard Form *“‘nxm o
= JEE

m Standard form: X
Only equality and positivity constraints A'X =b
Every LP can be written this way! X2.0

min X

u Turnlng inequalities into equalities
A Yb g X = b¥E
€70

m  What about variables? —
Negative variables: X< O — CL\GNJA f X 4n4 C"\ng'Jk
ff
Free variables: X ., o Sl)z\%ﬁjmﬂqfw Whintver X §hg,
\7/0 MP/S"L&SA*LA
Xz_7/() Xl"‘)(L -}L ﬁr

m Side note, can also turne uality into inequalities, how?

fzh — AX2L & af<b
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Understanding the Standard Form
* JEE

< n Cr
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Visualizing standard form LPs
" JE

mMmin ('X
m Standard form: _ L
>m AX -
n
. . e ]f'\l.u X 7% 0
Hard to visualize /' s ackepentlert zonshoeiits
Corresponds to n-m linear subspace X120

m A very important example:
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Feasibility Problems
* JEE

m “Find a (any) vector that satisfies the constraints, or say it's infeasible”
i.e., no objective ﬂ; vt ma an X Suchtadd AX 2 §
D —

_—

m  Much easier? . X
Not quite... I ———— M(ZXC'?
m Suppose you know optimal objective is v*- ¢/ y* r&

Solve feasibility problem g me on X

Such fhet  AXL

= Don’'t know v*? ~ C'x &V
Suppsse £ Lnow Ve LL,Y:} G = L+e.
. Y .
Birery - Scardh Solve AXYE  C'K S Vb Ly
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Announcements

* JE
m Update about waiting list and auditors - Next
week
Priority for people taking the class for credit
m Linear algebra review
Today, special TIME & LOCATION: 6-7PM NSH 1305

m First recitation, linear programming
Thursday, 5:00-6:20, Wean Hall 5409
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Understanding the Geometry of LPs

“ JEE
m Rest of today and part of next lecture:
Understanding geometry of LPs

m Focus on inequality constraints, but works with
equalities too
A few hints along the way

m Provides the foundation for
LP formulations
Duality
Solution methods
Conquering the world
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The Polyhedron®
" A
m Definition:

Inequality constraints
(Can also contain equalities)

m Visualization

* Sometimes called polytope, noboby can agree on the definition
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Another view of polyhedra:
Intersection of Halfspaces & Hyperplanes
“ JEE

m Half space:
m Hyperplane:

m Intersection:
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Infeasible LPs
= JEE

m LPisinfeasible if and only if polyhedron defined by constraints is empty
Feasibility doesn’t depend on the objective function

m Another interesting case: Polyhedron is a point
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Convex Sets
*
m Definition:
“Every line segment between two points is in the set”

m Examples:

Intersection of Convex Sets
= JEE
m Fundamental Theorem:
Intersection of convex sets is convex

m What can we say about polyhedra?
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Interesting Case: Convex Hull
* JJE

m A convex combination

m Convex hull
Set of all possible convex combinations

m Interesting fact: “Given set of points in a convex set, their convex
hull is contained in the convex set”
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Extreme Points of a Polyhedron
" JEE

m Extreme points cannot be represented as a linear
combination of two other points in polyhedron

m Examples:

24
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What you need to know
* J

m Formulating an LP
E.g., L, Regression
m Visualization of LPs
Solution, unboundedness, feasibility, standard form

m General and Standard Forms of Linear Programs
And transformations

Feasibility problems
The Polyhedron
Convex sets
Convex Hull
Extreme Points
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