Branch & bound

[schema, value] = bb(F, sch, bnd)
* [v,., rsch] = relax(F, sch)
* if integer(rsch): return [rsch, v.]

e if v, 2 bnd: return [sch, v, ]

* Pick variable x;

* [sch®, vO] = bb(F, sch/(x—0), bnd)

¢ [sch(), v(1)] = bb(F, sch/(x—1), min(bnd, v{®)))
e if (VO < v return [sch©), v(0)]

e else: return [sch(), v(1)




A random 3-CNF formula

(x5 V1 Vae) A(xzVaoaViIg) A(xsVaeVIg) A (ZeVEyV Ty
A(xirVzsVes)A(@7VT1VZe) A(zg Vs Vr)A(ZgVTeV T7)
ANZ7VXoVE)A(ZegVTaVIL) A(ToVE3VIT) A (g VTV T)
ANy VIV Tg) A7 VISV EZ) A (x3VELV Ty)A(ZgVarVI3)
AN(xoVTaVZ)A(ZeVETVEs)A(Z2Var VI A(Zs VeV T3)
ANz VZiVag)AN(@z7VeaVar)A(ZTsVZeVas) N (xyVasV )
ANZ1VZiIVas)A(ZgVaesVIs)A(xsVaeaVe)A(xg VI,V zy)
AN(ZgVTaVTy) A (ZaVELVE)A(ZgV 7 Var) A (T VgV Tg)

A(x1VaoVzg) A(ZsVIgV )



Example search tree



Ordering rules

e |f relaxation is available:
— most certain variable first
— most uncertain variable first

e |f no relaxation:

— most constrained variable first (fewest
remaining values in domain)

— activity rules (branch on variables that are
“near’ recent vars)



Summary so far

* Simple search

» Constraint propagation

 Branch & bound



Multiple representations

* Any given feasible region may have
many different representations

« Can make problem much easier or
harder to solve









¢ O
\(Z
1 2

()

()



Multiple representations

Typically, tension btwn tight & small

Tightest: hull of integer feasible points
— not small: can be exponentially many faces

If we have the exact convex hull:

So:
Few variables, lots of constraints:



Cutting planes example

minyst (1-x)+y=21, x+y=21, x,ye&{0,1}




Resolution

(@v-bvc)a(-avcvd)
= (-b v cvd)



SAT and cutting planes

* These “resolution cuts” provide a partial
description of the convex hull of integer
feasible points for any SAT problem

* [Hooker 92]: can generalize to get a
complete description

¢ Size:



Finding the convex hull

* If we have a non-integral optimal basic
solution to current relaxation, we know
that a cutting plane always exists

« But it might be difficult to find

* Interesting Q: is there a general way to
find a cutting plane?



Summary so far

« Several improvements on simple search

— constraint propagation
— branch & bound
— cutting planes

 B&B and cuts are very different

— for a given problem, one can work much
better than other

« Can we get best of both?



Branch & cut

[schema, value] = bc(F, sch, bnd)

* repeat until (no cuts added)
— [V, rsch] = relax(F, sch)
— if integer(rsch): return [rsch, v, ]
—if v, 2 bnd: return [sch, v,,]
— If desired: F := F U {new cuts based on rsch}

... continue as for branch & bound (try both
branches, return better one)



Branch & cut discussion

* Don’t always need to solve relaxation to
find cuts
—e.g., on failure in a SAT problem, know a
subset of our decisions led to contradiction

* |If we find a good cut near leaves of
search tree, can sometimes “lift”" it to
apply to ancestor nodes



